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INVARIANT POSTULATION* 

BY T. R. HOLLCROFT 

1. Definition. The postulation of a given manifold, simple 
or multiple, on a hypersurface is the number of conditions 
necessary in order that the hypersurface contain the given 
manifold. The manifold is uniquely determined both with 
respect to its nature and its position in the space involved. 
There exist among the coefficients of the hypersurface equations 
equal in number to the postulation. If the position of the given 
manifold is not defined, the parameters associated with its 
general position will occur in these equations. These parameters 
may be eliminated from the set of equations giving rise to a 
certain number of invariant relations involving the coefficients 
of the hypersurface. These invariants express the necessary 
and sufficient conditions that the hypersurface contain a mani
fold whose nature only is defined. The number of such in
variants associated with a hypersurface and a manifold of 
given nature will be called the invariant postulation of that 
manifold on the hypersurface. 

If P is the postulation of a manifold 0 on a hypersurface ƒ 
in i dimensions, and q is the number of independent conditions 
determining the position of (j> in i dimensions, the invariant 
postulation I of <j> on ƒ is given by the relation 

/ = P - q. 

Algebraically, this means that q arbitraries can be eliminated 
from P equations in P — q independent ways. 

2. Application. The purpose of this paper is to show how 
certain geometric relations involving general hypersurfaces and 
manifolds are revealed by means of the concept defined above. 
Some of these relations have been found before by other 
methods, but most of them are new. 

I t is not claimed that evidence of the existence of certain 
relations given by this method is proof of such existence. This 
method, by virtue of the general expression for / , points out 

* Presented to the Society, October 27, 1928. 
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geometric relations that might otherwise remain undiscovered. 
The formal proof of the existence of such relations must be 
established independently. This existence can be proved in 
many cases. In no case, general or special, however, has the 
author been able to establish the non-existence of a property 
suggested by this method. 

Consider a hypersurface ƒ of order n in i dimensions, and a 
manifold <t> of order 5 and dimension d. The invariant postula
tion of 0 on ƒ is determined by the values of n, i, s, d, when 
s = \ and in some cases for all values of s. 

If 7 > 0 , a certain number I of invariant relations must exist 
among the coefficients of ƒ in order that ƒ contain 0, that is, in 
order to contain <j>, ƒ must be a special hypersurface. If ƒ is to 
remain a general hypersurface with no relations among its 
coefficients, then the invariant postulation of any manifold it 
may contain must be either zero or negative. 

The numbers n, i, s, d, P, q must all always be positive 
integers, but since I = P — q, it results that 7 ^ 0 when q^P 
respectively. 

CASE I. 7 = 0. 

When I = P — q = 0, the postulation P of 0 equals the number of 
arbitraries q defining the position of 0. Algebraically, we have 
a set of P equations containing q arbitraries, P = q. Solving 
this system of equations, a finite number of sets of values of the 
q arbitraries is obtained. Each of these sets of q values defines 
the position of a manifold 0 contained in ƒ. Since, however, 
there are no conditions on the coefficients of ƒ, ƒ remains an 
entirely general hypersurface. The manifolds <j> are also general 
if so considered originally, but their positions in i-space are 
wholly defined b y / , that is, as soon as a particular ƒ is chosen, 
the manifolds cj> contained in it are thereby determined. 

Then 7 = 0 for a given n, i, s, d indicates that a general hyper
surface of order n in i dimensions contains a finite number of 
manifolds of order 5 and dimension d. In general when s > l , 
characteristics of </> in addition to 5 and d enter into the de
termination of I. 

CASE 2. I < 0 . 

When / is negative, it can no longer be interpreted as the 
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number of invariant relations necessary for ƒ to contain 0. In 
this case, therefore, I is defined solely by the relation 

I = P - q 

and the geometric meaning of 7, when negative, follows from 
this definition. 

Let q — P = a. Since in this case, q>P> it results that a>0 
and I=—a, that is, the number of arbitraries defining the 
position of 0 is greater by a than the number of algebraic 
equations in the system in which these arbitraries occur. There 
are, therefore, oo a sets of values of the q arbitraries that satisfy 
this system of equations and each set of values of the q arbi
traries defines the position of a manifold <f> contained in the 
general hypersurface/. 

Then I+a = 0, a > 0, for a given set of values of n, iy s, d, etc., 
indicates that a general hypersurface of order n in i dimensions 
contains oo a manifolds of order s, dimension d, etc. 

A familiar example of this case occurs for a simple point on a 
hypersurface in i dimensions. The postulation of the point is 
unity and the number of arbitraries locating the point in i 
dimensions is i. Then P = l, q = i, 1=1—i, that is, a general 
hypersurface of any order in i dimensions contains oo i~l points. 

3. Examples, The case of a simple point is given at the end 
of the preceding section. For a double point on a hypersurface, 
1=1. No hypersurface can have any singular point gratis. 

The postulation of a line on a hypersurface of order n in 
i dimensions is n-\-l. The position of a line in i dimensions is 
determined by the positions of any two points on it, that is, by 
2{i— 1) arbitraries. Then for a line on ƒ 

ƒ = n - 2% + 3. 

Setting 7 = 0, it results that a general hypersurface of order 
2i — 3 in i dimensions contains a finite number of lines. 
Schubert* discovered this by other methods. 

When l+a = 0, a > 0 , the above value of I gives 

n = 2i — a — 3. 

* H. Schubert, Die n-dimensionale Verallgemeinerung der Anzahlen für die 
vielpunktig berührenden Tangenten einer punktallgemeinen Flâche m-ten Grades, 
Mathematische Annalen, vol. 26 (1886), p. 73. 
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Then a general hypersurface of order 2i — a — 3 in i dimensions 
contains oo ° lines. 

For a double line on F, we have 

/ = i(n - 2) + 2. 

When 7 = 0, w<2 for ail values of i, that is, no hypersurface 
can have a double line gratis. 

For a set of s = 2 coplanar lines on ƒ, since the set contains 
s(s — l ) /2 intersections, 

P = s(2w - s + 3)/2, g = 2^ + 3(i - 2), 

7 = \s(2n - * - 1) - 3(i - 2). 

When 7 = 0, there results 

1 3(t - 2) 

2 ^ 

This is the order of a general hypersurface in i dimensions 
that contains a finite number of sets of 5 coplanar lines. This 
holds for all values of i and 5 such that 2 Ss^n and such that 
n is a positive integer. 

Substituting 5 = 3 in the above value of n, there results n = i. 
Then a general hypersurface of order ninn dimensions contains 
a finite number of sets of three coplanar lines. The cubic 
surface in ordinary space is a special case of this. 

The maximum number of coplanar lines that may occur on a 
hypersurface of order n is n. Setting s=n in the above value 
of n and solving for n we obtain 

n = J [ l + ( 2 4 ^ - 47)1 '2]. 

For a value of i such that this formula gives a positive integral 
value of w, a general hypersurface of order n in i dimensions 
contains a finite number of sets of n coplanar lines. For i ^ 2 4 , 
the values (i, n) satisfying these conditions are (3, 3); (4, 4); 
(7 ,6 ) ; (9, 7); (14,9) ; (17, 10); (24, 12). 

In case 2, 7 + a = 0, a>0, there results 

1 3(i - 2) - a 
n = — (s + 1) + — 

2 5 

This defines the order of a general hypersurface in i dimensions 
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that contains ooa sets of 5 coplanar lines. The formula is 
satisfied by n = s=a = 2 and i = 3, that is, a quadric in 3-space 
contains oo 2 sets of two coplanar lines as has long been known. 
No distinction is made here or elsewhere between real and 
imaginary lines. Setting a = s = 3, we obtain n = i— 1, that is, a 
general hypersurface of order i—\ in i dimensions contains oo3 

sets of three coplanar lines. 
The postulation of a general plane curve of order s ^ 2 on ƒ 

is the same as that of s coplanar lines. For a plane curve of 
order s in i-space, q = s(s + 3)/2 + 3(i — 2) since the equation 
of a plane curve contains s(s + 3)/2 arbitraries and the equations 
of a plane in i-space contain 3{i — 2) arbitraries. Then for a 
general plane curve of order s on f 

I = s(n - s) - 3{i - 2). 

The value of / for a plane curve shows that the invariant 
postulation of a plane curve of given order on a surface of given 
order is equal to the invariant postulation of its residual on that 
surface. This is true because the existence of one is sufficient 
for the existence of the other. The postulations of the two are, 
however, different because different numbers of conditions are 
necessary to determine them. 

The above expression for / does not hold for s = 1 and there
fore it does not hold for s = n — 1, since the residual of a plane 
curve of order n — 1 is a line. If a hypersurface contains a lines, 
a finite or infinite, it also contains «oo*~2 plane curves of 
order n — 1 since oo l~2 planes pass through each line. 

When 1 = 0, n = s + 3(i-2)/s. For s = 2, n = 3i/2-\. Then 
for every even value of i, a general hypersurface of order 
3i/2 — 1 contains a finite number of conies. For s = 3, n=i + l, 
that is, a general hypersurface of order i + 1 in i dimensions 
contains a finite number of plane cubics. 

When / + a = 0, n = s + (3i-~a — 6)/s. If i and a are both odd 
or both even, hypersurfaces of order n = (3i — a)/2 — 1 contain 
oo a conies. Also if a is a multiple of 3, hypersurfaces of order 
w = i + l — a/3 contain oo a plane cubics. If s = n, 3(i — 2)=a, 
that is, ƒ contains as many plane sections of order n as there are 
planes in i-space. 

The postulation of a linear manifold of dimension d in i 
dimensions is (w + l)(n + 2) • • • (n+d)/d\. The position of 
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this manifold in i dimensions is determined by (i — d)(d + l) 
conditions. Then for such a manifold on ƒ 

/ = (» + 1 ) 0 + 2) • • • O + d)/d\ - (i - d)(d + 1). 

For d = 2, this becomes the invariant postulation of a plane on ƒ 

7 = 0 + 1 ) 0 + 2)/2 - 3(i - 2). 

In this case, when 1 = 0, on solving for n we obtain 

» = è [ ( 2 4 i - 47)1'2 - 3 ] . 

This expression is less by two than the expression for the order 
of a hypersurface containing n coplanar lines. Then in each 
dimension in which occurs a general hypersurface of order n SL 
finite number of whose plane sections can be composed entirely 
of lines, there is also a general hypersurface of order n — 2 that 
contains a finite number of planes. 

When, in the case of a plane, / = 0, if n is of the form 3c + 1 
or 3^ + 2, i is always a positive integer. This implies that for all 
values of n not divisible by three, general hypersurfaces of 
order n in i = 0 2 + 3 n + 14)/6 dimensions contain a finite 
number of planes. 

The above methods may be applied to manifolds of any order 
in any number of dimensions. The foregoing examples are some 
of the simplest applications. As stated previously, the fact that 
7 ^ 0 does not prove the existence of manifolds on general 
hypersurfaces. To investigate such geometric properties of 
hypersurfaces of all orders in all dimensions separately would be 
practically impossible. This method aids in selecting certain 
cases that merit further examination. 
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