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T H E FIRST VARIATION OF A FUNCTIONAL* 

BY W. G. SMILEY, JR., AND G. C. EVANS 

1. Introduction. The purpose of the present note is to present 
simple hypotheses which are sufficient to yield the two funda
mental forms for the variation of a functional, expressed by a 
Stieltjes and a Lebesgue integral respectively.f The functional 

F[fW] is supposed to be defined for continuous f unctions ƒ (x) 
a 

within a region R bounded by the continuous functions $i(x), 
$ 2 W , where $i(x) <<£2(x), and by the ordinates 

$i(#) < f(x) < $2(#), a = x = b* 

The following hypotheses are to be considered : 
(I) There is an Mi such that 

\F\ji] -F[f*]\ ^ Munaxl ƒ, — ƒa | , (JiJtinR). 

(II) The first variation 

e = 0 € 

exists, and the limit so defined exists uniformly for all fi(x) in JR, 
where </>(#) is an arbitrary given continuous function, a^x^b. 

(III) There is an M such that 

* Presented to the Society, February 22, 1930. 
f The reader may consult the following references for various types of 

sufficient conditions: 
V. Volterra, Les Fonctions de Lignes, Paris, 1911. 
F . Riesz, Concernant les opérations fonctionnelles linéaires, Annales de l'Ecole 

Normale Supérieure, vol. 31, p. 10. See also F. Riesz, Sur les opérations 
linéaires (troisième note), Annales de l'Ecole Normale Supérieure, vol. 8 
(1907), p. 439. 

M. Fréchet, Sur la notion de différentielle de f onction de ligne, Transactions 
of this Society, vol. 15 (1914), p. 139. 

G. C. Evans, Note on the derivative and the variation of a function depending 
on all the values of another function, this Bulletin, vol. 21 (1915), p. 387. 

P. J. Daniell, The derivative of a functional, this Bulletin, vol. 25 (1919), 
p. 414. 
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I F[fi] ~ F[f*] ! è M f I Mx) - ƒ,(*) | dx, (ƒ!,ƒ, in X). 
•̂  a 

The hypothesis (III) evidently implies (I), with Mi = M(b — a). 

THEOREM 1. With the hypotheses (I), (II) the first variation 
takes the form 

(i) D[fM= f <Kx)daf(x), 

where a/(x)is a function of limited variation of x which for a given f 
is independent of <£. 

THEOREM 2. With the hypotheses (II), (III) the first variation 
takes the form 

(2) D[f,4>] = f 4>(x)Mx)dx, 
J a 

where P/(x) is summable in the Lebesgue sense, and for a given f is 
independent of <f>. 

2. Proof of Theorem 1. In order to prove Theorem 1 it is 
sufficient to prove that D[fy <(>] is additive for <j>; for then 

Dlfidfa + c^] = ciZ>[/,*i] + csD [ƒ,*,] , 

for arbitrary constants ci, c2. That the Stieltjes integral form 
of representation follows from this fact and the inequality 
\D[f, 0 ] | = Mi max |<£ |, which is an immediate consequence of 
(I), is Riesz's well known theorem. 

From the inequalities which express ( I I ) : 

D\fi,4>] 

D[hM 

F[fl + 4] _ F[fl] 

F[f2 + e</>] - F[f2] 

<v(e) 

<rj(e), 

in which the infinitesimal 77(e) =770(6) depends on <fi but not on 
fit it follows that 

| £ [ f t , 0 ] - # [ / 2 > 0 ] | <2V(e) + 2M-
max I ƒ 1 — ƒ21 
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By first limiting € and then \fx — / 2 1 , we see that this inequality 
implies that for a given 0, D[f, <j>] is uniformly continuous in f. 

But in the equation 

F\f + *(4>i + **)] ~F\f] F [ /+€(0 i + fo)]-Fl/+€01] 
€ € 

F[f + efr] - F[f\ 
_j ; 

6 

the three fractions differ respectively from the quantities 
D[f> 0 i+02] , D[ƒ+€</>!, 02] and D[f, 0i] by infinitesimals less 
in numerical value than rj<f>lH,i(e)1 7702(e) and rj<i>i(€) respectively. 
And since 0i and 02 are given, these infinitesimals all approach 
zero with e by (II). Hence 

D[f,4>i + 02] = lim D[f + €0!,02] + B[ / ,0 i ] 

This is the distributive property required for the proof of 
Theorem 1. 

3. Proof of Theorem 2. Under the hypotheses of Theorem 2, 
since (III) implies (I), the first variation takes the form (1) of 
Theorem 1. We may assume that at interior points of (a, b) 
the discontinuities of a/(x) are regular, that is, that 
df(x)= [<Xf(x+Q)+af(x — Q)]/2, since the value of a/(x) at an 
interior point of discontinuity does not affect the value of the 
integral. Theorem 2 may be proved by means of another 
theorem. 

THEOREM 3. If the first variation of F[f] has the Stieltjes form 
(1) and (III) is valid when f2=f, the first variation may also be 
written in the f or m (2). 

I t will be shown that af(x)} with the possible discontinuities 
regularized as just indicated, is absolutely continuous. For 
suppose this function is not absolutely continuous. Then, 
given fx>0, there is a sequence of finite sets of non-overlapping 
intervals 

{(<*!<"», W->), (o,<->, W->), • • • , (a/j?, &&>)}, (m = 1,2, • • • ) , 

such that 
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un 
>/* , ( » = 1,2, • • • ) , 

where 

(4) lim £)(W W ) - a»<m>) = 0 . 

Let C be a positive constant, and consider the continuous 
functions Ca'b' ,n defined as follows : 

(i) If a<a', b'<b, n is great enough so that a + l/n<a', 
af + 2/n<b', b' + l/n<b, and 

1 1 
Ca'b',n — C, a' -\ S oc ^ b' , 

n n 

0, a ^ x S a' , b' + —•£ x£b', 
n n 

and the functions Ca>b>,n are linear functions over the intervals 
{a' — 1/n, a' + l/n), (b' — l/n,b' + l/n), joining continuously on 
to the end values already denned. 

(ii) If a = a', b'<b, n is great enough so that b' + l/n<b, 
a,Jr\ln<b', and 

1 
Ca'6'.n = C , G ^ X ^ b' , 

= o, b' H ^ x S b' , 
n 

and Ca>b:,n is a linear function over (b' — l/n, &' + 1/n), joining 
continuously on to the end values already defined. 

(iii) If a<a'\ bf = b or if af=a, 6' = b, the definition is again 
modified in a manner analogous to (ii). 

In the case (i) we have 

lim I Ca>b',nda(x) 
n= oo J a 

-<[ a(b' + 0) + a(b' - 0) a{a' + 0) + a(a' - 0)" 

= C[a(b')-a(a')], 
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and the same final expression remains valid in the cases (ii) or 
(iii). Hence for a given m the quantity T, 

T = lim D\fy £C«>>6>o.n = l i m £ J Ca^H^ ,ndaf{x), 

has the value 

(5) T = C 2(«(*< (w)) - «(^i(w))) > CM. 
i=i 

But also, for a given w, if we write 

AF = F I ƒ + <• £ C V - v » J - F [ / ] , 

*=1 ^ a 

we have, by (III) , AFSeMIny or AF/e^MIni and by letting e 
approach zero, the same quantity D just used above is seen to 
have a value 

AF 
lim â MIn. 

Hence as w tends to infinity 

(6) T ^ JlfC2Z(*i(m> - ^ ( m ) ) -
i--=l 

But for m great enough, the right hand member of (6) can be 
made as small as we please, by (4) ; and (5) and (6) are in contra
diction. Hence af(x) must be absolutely continuous. If we 
define fif(x) as the derivative of af(x) where it exists, and as, 
say, zero otherwise, we shall have then, as is well known, 

otf(x) — const. + I ($f(x)dx, 
J a 

<j>(x)daf(x) = I <t>(x)Pf(x)dx. 
a J a 

The proof of Theorem 3 is thus complete. Theorem 2 is a 
corollary of Theorem 3. It may be remarked that in these 
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theorems /3(#) is merely summable, and that therefore they are 
not special cases of theorems where the corresponding function 
is summable with its square. 

4. Another Theorem. In the proof of Theorem 1, it is not 
sufficient to substitute for (II) the weaker condition by which 
merely the existence of D [fh 0 ] , / i in R, is demanded, since the 
situation must contain as a particular case that of the function 
^(^i» Ji) °f two independent variables, in the usual sense. But 
instead of the requirement of uniformity in (II) may be 
substituted other simple conditions. Thus we have the theorem : 

THEOREM 4. If F[fi] is continuous for f\ in the neighborhood of 
the particular f unction f, if D[fi, 0] exists for f\ in the neighborhood 
°f fi with 0 arbitrary, and if D[fi, </>] is continuous in f\ atfi~f, 
with 0 arbitrary but fixed, then the formula (1) is valid; and if also 

(III) \F[fi)-F[f]\ ^M (b\h~j\dx, 
J a 

the formula (2) is valid. 

In fact, since F[fi] is continuous in particular at / i = / , we 
have, by definition, an M such that 

\F[fi]-F[f]\ ^ M m a x \ fi - f\ , 

whence D[f, 0 ] ^ M max \<f> \. 
Also, the functions ^[/+e(</>i+02)], F [ /+e i0 i + e02], 

^ [ / + € 0 i ] a r e all continuous functions of e and differentiate 
with respect to c. In particular, for 0 <co' <e, 

F[f + €101 + €02] - F[f+€i4>l\ = € / ) [ ƒ + €101 + CO'02,02], 

an equation in which we may write ei = €. Consequently, the 
law of the mean applied to (3) yields the equation 

D[/+Co(0i + 02),01 + 0 2 ]=£>[ /+€0i + CO,02,02]+Z)[/+CO,,0l,0l] 

where co, co', co" are contained between 0 and e. And since 
D[fi> <t>] i s continuous at fi=f, we can let e approach zero, and 
obtain the relation D[f, 0i+02]=£>[ƒ, 02]+£>[/, 0 i ] . But 
this is the distributive property required in the proof of Theorem 
1, and the rest of the analysis proceeds as before. 
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5. Conclusion. I t is worthy of remark that by means of the 
property (III) , alone, the field of functions to which F[f] is 
applicable may be considerably extended. If (III) is valid, 
F[f] may be extended to all f unctions f in R summable Lebesgue. 
And if <$!(#)== — oo , <£2(x) = + oc, the functional may be 
extended to all functions summable Lebesgue. 

In fact, under (III) , the functional has the same fundamental 
property as integration with respect to sequences fn(x) with 
limit f(x) ; if the absolute continuity of ffn(x)dx is uniform in 
n and lim ƒ»(#) =ƒ(#), it follows that lim F[fn] exists and is 
independent of the choice of the sequence fn. Hence F[f] may 
be defined as the limit of F[fn]. And thus in successive steps, 
and by writing F[fi] = F[f2], if fi and f2 differ only on a set of 
zero measure, the extension is completed. 

T H E RICE INSTITUTE 

T H E EVALUATION OF CERTAIN D E F I N I T E 
INTEGRALS BY T H E USE OF 

PROBABILITY FUNCTIONS* 

BY W. D. BATEN 

1. Introduction. The object of this paper is to present three 
methods of evaluating certain definite integrals by using 
probability functions. The first method consists in finding the 
probability law or function for the sum of n independent 
variables, which are each subject to given probability laws, by 
Mayr's method f and comparing this with the probability for 
the same sum obtained by Dodd's method. { On equating the 
two results thus obtained one often finds the value of certain 
integrals. 

Method II consists in finding the probability law for n in
dependent variables, which is expressed as an integral, and then 
allowing n to be equal to 1. 

* Presented to the Society, August 29, 1929. 
f Karl Mayr, Wahrscheinlichkeitsfunktionen und ihre Anwendungen, Monats-

hefte für Mathematik und Physik, vol. 30. 
% E. L. Dodd, The frequency law of a function of one variable, this Bulletin, 

vol. 31 (1925), pp. 27-31; The frequency law of a function of variables with given 
frequency laws, Annals of Mathematics, (2), vol. 27, pp. 12-20. 


