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m„, all other solutions being obtained from this solution by the 
addition of multiples of k. 

THEOREM 2. If the minimum equations of n finite square 
matrices m\ to mn with elements in a field F are relatively prime 
then for any set of n polynomials hi, • • • , hm,in F, a polynomial 
f may be found such that 

f(nti) = hi(mi)y (i = 1, • • • , n). 

These theorems specialize to the above mentioned algebraic 
theorem since each Xi is a one by one matrix with minimum 
equation X — Xi = 0. 

I t should be noted that in the above discussion no restriction 
as to the field in which the elements of the matrices may lie 
is made, nor are the mi necessarily of the same order. 
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PROBLEMS OF T H E CALCULUS OF VARIATIONS WITH 
PRESCRIBED TRANSVERSALITY CONDITIONS* 
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1. Introduction. Problems of the calculus of variations in the 
plane for which a prescribed relation exists between the direc
tions of the extremals and the transversals were first studied 
by StromquistJ and Bliss.§ Recently Rawles, || using a method 
based on properties of the Hilbert invariant integral, has 
given an interesting treatment of the analogous problem in 
(x, yi, • • • , ;yn)-space. 

In the present paper the latter problem is attacked from a 
quite different point of view.^f The method here used avoids a 
restrictive hypothesis made by Rawles with regard to the ex-

* Presented to the Society, August 29, 1929. 
t National Research Fellow, 1928-1929. 
X Stromquist, Transactions of this Society, vol. 7 (1906), p. 181; Annals of 

Mathematics, (2), vol. 9 (1907), p. 57. 
§ Bliss, Annals of Mathematics, (2), vol. 9 (1907), p. 134. 
|| Rawles, Transactions of this Society, vol. 30 (1928), pp. 765-784. 
H The possibility of approaching the problem from this viewpoint was sug

gested to the writer by G. A. Bliss. 
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istence of an ^-parameter family of Mayer fields;* and the 
results of his paper are supplemented by a proof that his for
mulât f = geH actually gives the most general non-singular 
integrand function ƒ compatible with a prescribed transversality 
relation. 

2. Properties of the Transversality Coefficients of a Non-
Singular Problem of the Calculus of Variations. For a problem 
of minimizing the integral 

ƒ 0 , >'i, • • • , yn, y{, • • • , y*)dx, 

an extremal E through the point (x, yi, • • • , yn) in the direction 
(l:;yi : • • • '.yn) is said to be cut transversally by the hyper-
plane of directions (dxldyi.: • • • :dyn) through this point in case 

(2) (ƒ - yjdf/dy^dx + (df/dy^dy, = 0. 

In (2) the arguments in ƒ and its derivatives are x, yly • • • , yn, 
y 1 , • • • , Jn and, as elsewhere in this paper, a repeated Greek 
letter is an umbral index indicating a summation with the range 
1 to n unless otherwise specified. This definition of transver
sality is the usual one: it makes no appeal to the notion of a 
field or the transversal hypersurfaces thereof and defines what 
is meant by transversality for every set (x, 3>i, • • • , yn, 
yl > • • • » yû ) in the fundamental region R of the integral (1) J. 

If (1) is a non-singular problem, that is to say, if there exists a 
region R in which D= \d2f/dyidyj |, (i,j = 1, • • • , n), is every
where different from zero,§ then the quantity (f—y^df/dy^) 

* Rawles, loc. cit., p. 774. 
f Loc. cit., p. 778. 
t Consult in this connection Bliss, Calculus of Variations, 1925, p. 129. 

In the present paper we assume tha t ƒ is of class C" in a region R of 
(x, yi, • • • , yn, yi , • • • , yl )-values. For a definition of the term class as 
here used see Bolza, Vorlesungen iiber Variationsrechnung, p. 13. 

§ Problems for which D^O have been called regular by Goursat (Cours 
d'Analyse Mathématique, vol. I l l , 1923, p. 561) and ordinary by Hadamard 
(Leçons sur le Calcul des Variations, vol. I, 1910, p. 68). The term non-
singular has been employed in lectures by G. A. Bliss, who characterizes a 
problem as regular only in case the quadratic form with matrix \\d2f/dyi dy' || 
is positive definite. This latter usage seems preferable since it requires that in 
higher space as in the plane the Legendre condition in stronger form shall hold 
for regular problems. 
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is not identically zero. For if ƒ satisfies the equation 
f—y^df/dy^ = 0 it can be shown by consideration of the associ
ated symmetric system 

(3) dy{/y{ = . . • =dyilyl = df/f 

that the most general non-singular integral ƒ of/—y^df/dy^ = 0 
is given by 

(4) ƒ - y{F(u2, • • • , unj x, yh • • • , yn), uk = yi/yl, 

k = 2, - • • , n, 

where F is an arbitrary function of its arguments. But for the 
integrand function ƒ in (4) it is found that 

I dW y I yy' d2F yj I 

dupdUy (y{)z dupduc (y{)2 

d2F y£ d2F 1 
j 

I durdu0 {ylY durduc y { \ 

where r, c, /3, y = 2, • • • , n and /3 and y are umbral. The de
terminant on the right in (5) is easily shown to be identically 
zero. Hence a problem (1) with an integrand function (4) is 
always singular. 

Assume (1) to be a non-singular problem and restrict atten
tion to that portion of the fundamental region R in which the 
quantities ƒ and {f—y»df/dy£) are different from zero. In this 
subregion of R the ratios 

(6) /. = (df/dyi)/(f ~ yW/àyl), (i = 1, • • • , n), 

are well defined and of class C". These ratios will be called the 
transversality coefficients of the problem (1). 

It is found that 

(7) i + y;t*=f/(f-y;df/dy{). 

Hence in the subregion of R specified, the transversality co
efficients ti necessarily satisfy the inequality 

(8) 1 + y„'/M * 0. 

Geometrically this means that the extremal through the point 
(x, yi, - - - , yn) in the direction 1 :y[ : • • • \yl is not tangent 
to the hyperplane with normal \\t\\ • • • :tn in this point. 
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Finally it is easy to verify that 

' d*f/dyidy/ + Uy;d*f/dy;dyi 
(9) | dti/dyi | = 

( ƒ - yiàf/àyi)n 

(i,j= 1, • • • , w). 

The value of the determinant on the right in (9) is given by the 
product of the determinants D and \àf +yi t2-\, the latter of 
which is found to be equal to l+3v%. Hence 

(10) I dU/dyj | = JD/(f - yjdf/dy£)"+\ 

and therefore in the subregion of R under consideration the 
Jacobian of the ti with respect to the yj is different from zero. 

3. Conditions for a Set of n Functions to be Transversality 
Coefficients. The condition (2) establishes a certain relation 
between the lineal element (x, yi, • • • , yn, yi , • • -, 3^») through 
the point (x, 3>i, • • • , yn) and the hyperplane of directions 
(dxidyii • • • :dyn) with normal (l:h: • • • :tn) through this 
point. If n given functions Ti(x, yh • • • , yn, y{, • • • , y J), 
i = l, • • • , n, of class C" and satisfying the inequalities 
I + 3 / / r M ^ 0 , \dTi/dyj J 7^0 in a region S of (x,yi, • • • , yn, 
y', • * ' 1 yn) -values are to be the transversality coefficients of 
a non-singular problem (1) in S then the equations 

(11) dx+ T,dy, = 0, 

and (2) must define the same hyperplane of directions 
(dxidyii • - • :dyn) for all sets (x, yiy • • • , yn, y{, • • • , y I) in 
S. Hence corresponding coefficients in these two relations must 
be proportional. Consequently a set of n functions T{ as de
scribed can be transversality coefficients of a non-singular prob
lem (1) only in case there exists a function f(x, yi, • • • , yn, 
yl y ' ' • y yn ) satisfying the system of equations 

(12) ƒ - yidf/dyi = h, df/dyt = hTu (i = 1, • • -,w), 

and different from zero in 5. In (12) h =^0 is a function of 
(#> 3,i» ' * ' y yn, y( y - - - y yn). Elimination of h in (12) leads 
to the following system of non-homogeneous partial differential 
equations which must be satisfied by ƒ regarded as a function 
of the n independent variables {y(, • • • , yn') and the n + 1 
parameters (x, yi, • - • , yn) • 
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(13) Tkf - (0/ + Tkyé)(df/dyé) = 0, (k = 1, • • • , n). 

To determine the integrability conditions for the system (13) 
we transform it into a system of equations linear and homo
geneous in the first partial derivatives of a function 
G(x, 3/1, • • • , yn, y{ , • • • , y I, ƒ) with G/^0 which defines ƒ by 
means of the equation G = constant. The resulting system is 

(14) UkG = (5 / + Thyi)(eG/dyi) + Tkf(8G/df) = 0. 

The matrix of coefficients of (14) contains the nth. order de
terminant \ôé -\-yl Tk |, i, k = l, • • • , n, which has the value 
(1+yt Ty) and hence is different from zero in S. Since the n 
equations in (14) are therefore independent, it follows that if a 
single one of the commutators of this system is not a linear 
combination of the original equations the only solution for G is 
a constant and hence no solution ƒ of (13) exists. Therefore the 
equations (13) are compatible if and only if the system (14) is a 
complete system. 

A typical commutator of the system (14) is found to have the 
value 

(15) (UmUk)G={Tmkyl + TkbJ! - Tm6#)(dG/dyi) + Tmkf(dG/df), 

where 

(16) Tmk = yl(TmdTk/dyi-ThdTjdy!) + {dTk/dyJl-dTjdyi). 

In order that 

(17) (UmUk)G = rvUyGy m, k = 1, • • • , n> m < ky 

where the r* (i = 1, • • • , n) are coefficients of combination it is 
necessary that 

Tmkyi + TkbJ - Tmh' = r,(V + T,yl)f i = 1, • • • , », 
(18) 

Tmkf = r,Tpf. 
Since ƒ ̂ 0 it follows that 

Y{ = 0 if i 9e m, k, 

(19) n = Tk if i = m, 

ri = — Tm if i = k. 

Hence the n(n — l)/2 quantities Tmk are necessarily zero if (14) 
is a complete system. Conversely the conditions 
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(20) Ymk = 0, my k = 1, • • • , n, m < k, 

are sufficient conditions for the system (14) to be complete, 
for if all of the Tmk vanish then there actually exist coefficients 
ri, namely those in (19), for which the relations (17) subsist. 
Taken in connection with the results of §2 this proves the 
following theorem. 

THEOREM 1. Necessary and sufficient conditions for n func
tions Ti(x} y i, • • - , yn, y I , • • • , y I ) to be the transver s ality 
coefficients of a non-singular problem (1) in a region S of 
(x, 3>i, • • • , yn, y{, • • • , yn')-values are that in S the f unctions 
Ti be of class C" and satisfy the inequalities \dTi/dyj | ^ 0 , 
l+yt Tp?*0 and the n{n — l)/2 relations (20). 

4. Determination of the most general Integrand Function. Sup
pose that n functions Ti which satisfy the conditions of Theorem 
1 are given. What is the most general integrand function 
f(x, Ju ' ' • i yn, yl, • • • , yn) of a non-singular problem (1) 
which has the set Ti as its transversahty coefficients? To answer 
this question consider the line integral 

(21) H = f" T.dyUiX + yiT,) 
Jo 

in the {yl, • • • , j ^ - s p a c e . In (21) the symbols 0 and y' used 
as limits represent n-partite variables. It is found that neces
sary conditions for (21) to be independent of the path of inte
gration are that the Ti satisfy the n{n — \)/2 relations* 

(22) Rik = 0, i, k = 1, • • • , n, i < k, 

where 

(23) Rmk = y J [TmdTjdyu' — TkdTjdyJ 

+ T,{dTk/dyJi - dTm/dyk')} + {dTk/dyJ - dTm/dyk
f). 

These conditions are also sufficient conditions for independence 
of path in a space of suitably simple connectivity properties. 

It can be shown that in terms of the Tmk introduced in (16) 

(24) Rmk = (1 + y; T,)Ymk + y I TkY,m + y,' 7 \ J V 

* Compare Rawles, loc. cit., p. 778. 
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Hence when all of the Ymk vanish, as they do for the set T{ 
under consideration, the conditions for the line integral H to be 
independent of the path in such a space are satisfied. 

A particular solution of the homogeneous system (14) is 

(25) G = fe~*. 

Hence, since the general integral of a complete system of n 
equations in n-\-\ independent variables is an arbitrary function 
of a single particular integral of the system,* the most general 
solution of (14) is given by 

(26) G=F(fe-*;x,yl9-.- ,yn), 

where F is an arbitrary function of the arguments indicated. 
The most general non-singular solution ƒ of the system of equa
tions (13) is now obtained by solving for ƒ the equation 
F{fe~H\ x> yii ' ' ' ,3'n)=0.f Hence we reach the following con
clusion. 

THEOREM 2. If n f unctions Ti(x, yi, • • • , yn, y{, • • • , y£) 
satisfy the conditions of Theorem 1, then there always exists a 
non-singular problem (1) with an integrand function ƒ of class 
C,n which has the f unctions Ti as its transver sality coefficients. 
The most general such problem has an integrand function 

(27) ƒ = g(x, yh • • • , yn)e
H 

where g is different from zero and of class C" but is otherwise an 
arbitrary f unction of its arguments, and where H has the value (21). 

An integrand function ƒ of the form (27) was found in an 
entirely different manner by Rawles. His argument although 
of much interest requires the decidedly restrictive hypothesis 
of the existence of an ^-parameter family of Mayer fields; and, 
moreover, does not show that a function ƒ of the form (27) is 
actually the most general integrand function of a problem (1) 
with a prescribed transversality condition. 

T H E UNIVERSITY OF CHICAGO 

* Goursat, Leçons sur VIntégration des Equations aux Dérivées Partielles du 
Premier Ordre, 1921, p. 71. 

f Goursat, loc. cit., p. 95. 


