By Theorem 1 of M.H. $\S 4, \phi_{1} \equiv \psi_{1}$, and $\phi_{2} \equiv \psi_{2}$. It follows, then, from Theorem 14 of M.H. §1, that $\phi_{1} \equiv \phi_{2}$.

Theorem 4. If ϕ_{1} and ϕ_{2} are two right angles in space, then $\phi_{1} \equiv \phi_{2}$.

Proof. If ϕ_{1} and ϕ_{2} are in the same plane, $\phi_{1} \equiv \phi_{2}$ by Theorem 1 of M.H. §4. If ϕ_{1} and ϕ_{2} are not in the same plane, they lie in intersecting planes or in non-intersecting planes. If they lie in intersecting planes, they are congruent to each other by Theorem 3. If ϕ_{1} and ϕ_{2} lie in the planes α_{1} and α_{2}, respectively, and α_{1} does not intersect α_{2}, there exists a plane α_{3} which intersects both α_{1} and α_{2}. There exists in α_{3} a right angle ϕ_{3}. By Theorem $3, \phi_{1} \equiv \phi_{3}$ and $\phi_{2} \equiv \phi_{3}$; hence, by Theorem 14 of M.H $\S 1$, we have $\phi_{1} \equiv \phi_{2}$.

The University of Texas

CERTAIN QUINARY FORMS RELATED TO THE SUM OF FIVE SQUARES*

BY B. W. JONES \dagger

1. Introduction. The number of solutions in integers x, y, z of the equation $n=x^{2}+y^{2}+z^{2}$ is a function of the binary class number of n. For numerous forms $f=a x^{2}+b y^{2}+c z^{2}$, the expression of the number of solutions of $f=n$ in terms of the class number is another way of showing that the number of representations of n by f is a function of the number of representations of various multiples of n as the sum of three squares. \ddagger

Similarly, the number of solutions of the equation $n=x^{2}+$ $y^{2}+z^{2}+t^{2}$ in integers is the sum of the positive odd divisors of n, multiplied by 8 or 24 , according as n is odd or even. There are various forms $f=a x^{2}+b y^{2}+c z^{2}+d t^{2}$ for which the number of representations of n by f is a multiple of the sum of the odd divisors of n. The number of representations of n by one of

[^0]these forms is thus a simple function of the number of representations of n as the sum of four squares.*

Following a suggestion of E. T. Bell, I have here considered as the fundamental function, $\phi(n)$, the number of representations of n as the sum of five squares. With the exception of three forms $\left(f_{11}, f_{12}, f_{13}\right)$, the number of solutions of $n=x_{1}^{2}+$ $a_{2} x_{2}^{2}+a_{3} x_{3}^{2}+a_{4} x_{4}^{2}+a_{5} x_{5}^{2}$, where $a_{i}=1,2$ or 4 , is shown to be expressible in terms of ϕ and for $a_{i}=1,2,4$, or 8 the number of solutions of $f=n$ is expressed in terms of ϕ and two other functions (α and β). It should be noted that for certain values of $n, M_{a b c}(n)$ is expressible totally in terms of ϕ. It is true in many cases when n is even and in the following formulas when n is odd: (37.2), (37.3), (38.1), (40.1), (40.2), (41.1), (44.1), (46.1), (48.1), (48.2), (50.1), (52.1). See also the last section of the paper giving a few miscellaneous results.
2. Notations. The letters n, m, x, y, μ are used to denote integers; m and μ are odd and n and m are positive.
$N[n=f]$ denotes the number of representations of n by the form $f=x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2}+a_{4} x_{4}^{2}+a_{5} x_{5}^{2}$, the coefficients to be arranged in increasing order of magnitude.
f_{j} or f_{j}^{\prime} is the form f when j of the coefficients are 2 or 4 respectively and the rest of the coefficients are 1 .
$f_{i j}$ is the form f when i of the coefficients are $2, j$ of them 4 and the remainder are 1.
$f_{a b c}$ is the form $x_{1}^{2}+a x_{2}^{2}+b x_{3}^{2}+c x_{4}^{2}+8 x_{5}^{2}$ where a, b and c are powers of 2 .
$M_{j}(n)=N\left[n=f_{j}\right] ; \quad M_{j}^{\prime}(n)=N\left[n=f_{j}^{\prime}\right] ; \quad M_{i j}(n)=N\left[n=f_{i j}\right] ;$ $M_{a b c}(n)=N\left[n=f_{a b c}\right]$.

We regard the following as fundamental functions:
$M_{0}(n)=\phi(n) ; \alpha(m)=M_{11}(m) ; \beta(m)=M_{244}(m)$, if $m \equiv 1(\bmod 8)$.
We also use the following for brevity's sake: $\lambda(n)=M_{1}^{\prime}(n)$; $\lambda^{\prime}(4 n)=N\left[4 n=f_{1}^{\prime} ; x_{1} x_{2} x_{3} x_{4}\right.$ odd $] ; \alpha^{\prime}(n)=N\left[n=f_{11}\right.$ with x_{1} odd $]$ and $\phi^{\prime}(m)=N\left[m=f_{0} ; x_{1} x_{2} x_{3} x_{4} x_{5}\right.$ odd $]$, which has a value different from 0 only when $m \equiv 5(\bmod 8)$.
3. A Fundamental Lemma. $\dagger N\left[2 n=x^{2}+y^{2}\right]=N\left[n=x^{2}+y^{2}\right]$.

[^1]This follows from the fact that $2 n=x^{2}+y^{2}$ implies that the pair of equations $x+y=2 X$ and $x-y=2 Y$ is solvable for X and Y and there is a one to one correspondence between the solutions of $2 n=x^{2}+y^{2}$ and $n=X^{2}+Y^{2}$.

Corollary 1.
$N\left[2 m=x^{2}+y^{2}\right]=2 N\left[m=\mu^{2}+4 y^{2}\right]$.

Corollary 2.

$N\left[2 n^{\prime}=x^{2}+y^{2}\right]=N\left[n^{\prime}=x^{2}+y^{2}\right]=N\left[2 n^{\prime}=2 x^{2}+2 y^{2}\right]$.
4. Reduction Formulas for $\phi(n)$. Since $f_{0}=n \equiv 0(\bmod 4)$ implies that just one or all of the x 's are even, we have

$$
\begin{equation*}
\phi(4 n)-\phi(n)=5 \lambda^{\prime}(4 n) \tag{1}
\end{equation*}
$$

Applying Corollary 1, we have

$$
\begin{aligned}
\lambda^{\prime}(4 n) & =4 N\left[2 n=\mu_{1}^{2}+\mu_{2}^{2}+4 x_{3}^{2}+4 x_{4}^{2}+2 x_{5}^{2}\right] \\
& =8 N\left[n=\mu_{1}^{2}+4 x_{2}^{2}+2 x_{3}^{2}+2 x_{4}^{2}+x_{5}^{2}\right] .
\end{aligned}
$$

Applying Corollary 2, we have
$\left(1^{\prime}\right) \lambda^{\prime}(4 n)=8 N\left[n=\mu_{1}{ }^{2}+4 x_{2}{ }^{2}+x^{2}+y^{2}+x_{5}^{2} ; x \equiv y(\bmod 2)\right]$, (2) $\lambda^{\prime}(4 n)=8 \lambda^{\prime}(n)$ if $n \equiv 0(\bmod 4)$.

If $n=2 m$ note that $f_{0}=2 m$ implies that exactly two x 's are odd and we have from (1^{\prime})

$$
\begin{equation*}
\lambda^{\prime}(8 m)=4 \phi(2 m) / 5 \tag{3}
\end{equation*}
$$

If $n=m$ consider first the case $m \equiv 5(\bmod 8)$. Then

$$
\begin{aligned}
\phi^{\prime}(m) & =4 N\left[m=f_{228} \text { with } x_{1} x_{2} x_{3} \text { odd }\right] \\
& =8 N\left[m=\mu_{1}{ }^{2}+4 \mu_{2}{ }^{2}+8 x_{3}{ }^{2}+16 x_{4}{ }^{2}+8 x_{5}^{2}\right]
\end{aligned}
$$

Now $f_{4}^{\prime}=m$ implies that one of $x_{2}, x_{3}, x_{4}, x_{5}$ is incongruent mod 2 to the other three, and thus

$$
\begin{aligned}
& M_{4}^{\prime}(m)=4 N\left[m=f_{4}^{\prime} ; x_{2} \not \equiv x_{3} \equiv x_{4} \equiv x_{5}(\bmod 2)\right] \\
& =4 N\left[m=\mu_{1}^{2}+4 \mu_{2}^{2}+16 x_{3}^{2}+8 x_{4}^{2}+8 x_{5}^{2} ; x_{4} \equiv x_{5}(\bmod 2)\right] \\
& \quad+4 N\left[m=\mu_{1}^{2}+16 x_{2}^{2}+4 \mu_{3}^{2}+8 x_{4}^{2}+8 x_{5}^{2} ; x_{4} \not \equiv x_{5}(\bmod 2)\right] \\
& =4 N\left[m=\mu_{1}^{2}+4 \mu_{2}^{2}+8 x_{3}^{2}+16 x_{4}^{2}+8 x_{5}^{2}\right] .
\end{aligned}
$$

Thus $M_{4}^{\prime}(m)=\phi^{\prime}(m) / 2$. This taken with the known equation
$5 M_{4}^{\prime}(m)+\phi^{\prime}(m)=\phi(m)$, found by noting that $f_{0}=m$ implies that just one or all the x 's are odd, gives

$$
\begin{equation*}
\phi^{\prime}(m) 2 \phi(m) / 7 \quad \text { if } \quad m \equiv 5(\bmod 8) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{4}^{\prime}(m)=\phi(m) / 7 \quad \text { if } \quad m \equiv 5(\bmod 8) \tag{5}
\end{equation*}
$$

Now from (1^{\prime}), we have $\lambda^{\prime}(4 m)=8 M_{4}^{\prime}(m)$ if $m \equiv 5(\bmod 8)$. Since $f_{0}=m$ implies that just three of the x 's are odd, or just one is odd according as $m \equiv 3(\bmod 4)$ or $\equiv 1(\bmod 8)$, we have, from (1^{\prime}) and (5),

$$
\begin{equation*}
\lambda^{\prime}(4 m)=8 a \phi(m), \tag{6}
\end{equation*}
$$

where $a=1 / 10,1 / 5$, or $1 / 7$, according as

$$
m \equiv 3(\bmod 4), \equiv 1(\bmod 8), \quad \text { or } \equiv 5(\bmod 8)
$$

If $n^{\prime} \neq 0(\bmod 4)$, we have, using (1) and (2),

$$
\begin{aligned}
& \phi\left(4^{\alpha} n^{\prime}\right)-\phi\left(4^{\alpha-1} n^{\prime}\right)=5 \cdot 8^{\alpha-1} \lambda^{\prime}\left(4 n^{\prime}\right),(\alpha \geqq 1), \\
& \phi\left(4^{\alpha-1} n^{\prime}\right)-\phi\left(4^{\alpha-2} n^{\prime}\right)=5 \cdot 8^{\alpha-2} \lambda^{\prime}\left(4 n^{\prime}\right),(\alpha \geqq 2), \\
& \phi\left(4 n^{\prime}\right)-\phi\left(n^{\prime}\right)=5 \lambda^{\prime}\left(4 n^{\prime}\right) .
\end{aligned}
$$

Adding, we get

$$
\begin{equation*}
\phi\left(4^{\alpha} n^{\prime}\right)-\phi\left(n^{\prime}\right)=5 \frac{8^{\alpha}-1}{7} \lambda^{\prime}\left(4 n^{\prime}\right) \tag{7}
\end{equation*}
$$

where $\alpha \geqq 1$ and $n_{3} \neq 0(\bmod 4)$. Then, using (3) and (6), we have the reduction formulas

$$
\begin{equation*}
\phi\left(2^{2 \alpha+1} m\right)=\left(2^{3 \alpha+2}+3\right) \phi(2 m) / 7 \tag{8.1}
\end{equation*}
$$

for $\alpha \geqq 1$,

$$
\begin{equation*}
\phi\left(4^{\alpha} m\right)=A \phi(m) / 7 \tag{8.2}
\end{equation*}
$$

where $\alpha \geqq 1$ and $A=2^{3 \alpha+2}+3,8^{\alpha+1}-1,\left(5 \cdot 8^{\alpha+2}+9\right) / 7$ according as $m \equiv 3(\bmod 4), \equiv 1(\bmod 8)$, or $\equiv 5(\bmod 8)$.
5. Relationship between $\lambda(n)$ and $\phi(n)$. It is obvious that $\lambda^{\prime}(4 n)=\lambda(4 n)-\phi(n)$. Thus, from (1), we have $\phi(4 n)+4 \phi(n)=$ $5 \lambda(4 n)$. This from (8) gives the formulas below for $\lambda(4 n)$. We
find $\lambda(m)$ by noting that $f_{0}=m$ implies that just three of the x 's are odd or just one is odd according as $m \equiv 3(\bmod 4)$ or $m \equiv 1(\bmod 8)$ and that $\lambda(m)=4 M_{4}{ }^{\prime}(m)$ if $m \equiv 5(\bmod 8)$. To obtain $\lambda(2 m)$ note that $f_{0}=2 m$ implies just two x 's are odd.

$$
\begin{equation*}
\lambda\left(4^{\alpha+1} m\right)=B \phi(m) \tag{9.1}
\end{equation*}
$$

where $\alpha \geqq 0$ and $B=3\left(2^{3 \alpha+4}+5\right) / 35, \quad\left(3 \cdot 2^{3 \alpha+5}-5\right) / 35$, or $3\left(2^{3 \alpha+5}+3\right) / 49$, according as $m \equiv 3(\bmod 4), \equiv 1(\bmod 8)$, or $\equiv 5(\bmod 8)$;

$$
\begin{equation*}
\lambda\left(4^{\alpha} \cdot 2 m\right)=3\left(2^{3 \alpha+1}+5\right) \phi(2 m) / 35 \tag{9.2}
\end{equation*}
$$

where $\alpha \geqq 0$;

$$
\begin{equation*}
\lambda(m)=4 a \phi(m) \tag{9.3}
\end{equation*}
$$

where a is defined in (6).
6. Forms f, where $M(n)$ is Expressible Totally in Terms of ϕ.*

Case I: $n=m$. Note that $\lambda(2 m)=6 N\left[f_{1}^{\prime}=2 m ; x_{1} x_{2}\right.$ odd and both x_{3} and x_{4} even $]=12 \alpha^{\prime}(m)$. Thus

$$
\begin{equation*}
\alpha^{\prime}(m)=\phi(2 m) / 20 \tag{10}
\end{equation*}
$$

Now $f_{1}=m$ implies that one of $x_{1}, x_{2}, x_{3}, x_{4}$ is incongruent to the other three modulo 2, that is,

$$
M_{1}(m)=4 N\left[m=f_{1} ; x_{1} \not \equiv x_{2} \equiv x_{3} \equiv x_{4}(\bmod 2)\right]=4 \alpha^{\prime}(m)
$$

and

$$
\begin{equation*}
M_{1}(m)=\phi(2 m) / 5 \tag{11}
\end{equation*}
$$

The equation $f_{1}^{\prime}=m$ implies that just three of $x_{1}, x_{2}, x_{3}, x_{4}$ are odd, or just one is odd, according as $m \equiv 3$ or $1(\bmod 4)$. Thus, using (9.3),

$$
\begin{equation*}
M_{2}^{\prime}(m)=b \phi(m), \quad \text { where } b=1 / 10,3 / 5,3 / 7 \tag{12}
\end{equation*}
$$

according as $m \equiv 3(\bmod 4), \equiv 1(\bmod 8)$, or $\equiv 5(\bmod 8)$.
We note that

$$
M_{4}(m)=N\left[m=f_{0} ; x_{1} \text { odd, } x_{2} \equiv x_{3}, x_{4} \equiv x_{5}(\bmod 2)\right]
$$

It is therefore true that $M_{4}(m)=2 M_{2}^{\prime}(m), M_{2}^{\prime}(m) / 3$ or

[^2]$M_{2}^{\prime}(m) / 3+\phi^{\prime}(m)$, according as $m \equiv 3(\bmod 4), \equiv 1(\bmod 8)$, or $\equiv 5(\bmod 8)$. Thus, from (12) and (4),
\[

$$
\begin{equation*}
M_{4}(m)=c \phi(m), \tag{13}
\end{equation*}
$$

\]

where $c=3 / 7$ or $1 / 5$ according as $m \equiv 5(\bmod 8)$ or $\not \equiv 5(\bmod 8)$.
Also $m=f_{2}^{\prime}$ implies that all of x_{1}, x_{2}, x_{3} are odd, or just one is odd according as $m \equiv 3$ or $1(\bmod 4)$ and thus $M_{22}(m)=M_{2}^{\prime}(m)$ or $M_{2}^{\prime}(m) / 3$ respectively. We have

$$
\begin{equation*}
M_{22}(m)=a \phi(m), \tag{14}
\end{equation*}
$$

where a is defined in (6). Since $f_{2}=m$ implies that just one of x_{1}, x_{2}, x_{3} is odd, or all are odd, we see that

$$
M_{2}(m)=N^{\prime}(m)+3 M_{22}(m)
$$

where $N^{\prime}(m)=N\left[m=f_{2} ; x_{1} x_{2} x_{3}\right.$ odd $]$. Now

$$
N^{\prime}(m)=M_{2}^{\prime}(m), 0, \text { or } \phi^{\prime}(m),
$$

according as $m \equiv 3(\bmod 4), \equiv 1$, or $5(\bmod 8)$. Using (12), (14) and (4), we have

$$
\begin{equation*}
M_{2}(m)=d \phi(m) \tag{15}
\end{equation*}
$$

where $d=2 / 5,3 / 5$, or $5 / 7$, according as $m \equiv 3(\bmod 4), \equiv 1$ $(\bmod 8)$, or $\equiv 5(\bmod 8)$.

The following results are obvious:

$$
\begin{align*}
M_{31}(m) & =\alpha^{\prime}(m)=\phi(2 m) / 20 \tag{16}\\
M_{3}(m) & =2 M_{31}(m)=\phi(2 m) / 10 \tag{17}\\
M_{3}^{\prime}(m) & =2 M_{2}^{\prime}(m) / 3=2 \phi(m) / 5 \text { or } 2 \phi(m) / 7 \tag{18.1}
\end{align*}
$$

according as $m \equiv 1$ or $5(\bmod 8)$;

$$
\begin{gather*}
M_{3}^{\prime}(4 n+3)=0 \tag{18.2}\\
M_{4}^{\prime}(m)=\frac{1}{2} M_{3}^{\prime}(m)=e \phi(m) \tag{19}
\end{gather*}
$$

where $e=0,1 / 5$, or $1 / 7$ according as $m \equiv 3(\bmod 4), \equiv 1(\bmod 8)$, or $\equiv 5(\bmod 8)$;

$$
\begin{equation*}
M_{21}(m)=2 M_{22}(m)=2 a \phi(m) \tag{20}
\end{equation*}
$$

where a is defined in (6).
Case II : n even. We express $N[n=f]$ in terms of λ and ϕ from which, by reference to formulas (9) and (8), $N[n=f]$ may
be expressed in terms of ϕ alone. Since $f_{1}{ }^{\prime}=4 n$ implies $x_{1} \equiv x_{2} \equiv$ $x_{3} \equiv x_{4}(\bmod 2)$,

$$
\begin{array}{ll}
M_{1}(2 n)=\lambda(4 n), & \left(\text { for } M_{1}(m) \text { see }(11)\right), \\
M_{3}(2 n)=\phi(n), & \left(\text { for } M_{3}(m) \text { see }(17)\right) \tag{22}
\end{array}
$$

Since

$$
\phi(2 n)=N\left[4 n=f_{3} ; x_{1} \equiv x_{2}(\bmod 2)\right]=M_{2}(2 n)+2 N^{\prime}(2 n)
$$

where $N^{\prime}(2 n)=N\left[2 n=f_{1}^{\prime} ; x_{1}\right.$ odd $]$, we see that

$$
N^{\prime}(2 m)=3 N\left[2 m=f_{3}^{\prime}\right]=6 M_{31}(m)
$$

and that

$$
N^{\prime}(4 n)=\lambda^{\prime}(4 n)
$$

Using (16) and (1), we then have
(23.1) $M_{2}(2 m)=2 \phi(2 m) / 5$, (for $M_{2}(m)$ see (15)),
(23.2) $\quad M_{2}(4 n)=\phi(4 n)-2 \lambda^{\prime}(4 n)=\{3 \phi(4 n)+2 \phi(n)\} / 5$.

Obviously,

$$
\begin{equation*}
M_{4}(2 n)=M_{1}(n)=\phi(2 n) / 5 \text { or } \lambda(2 n) \tag{24}
\end{equation*}
$$

according as n is odd or even. (For $M_{4}(m)$ see (13).)
Now $M_{2}^{\prime}(2 m)=3 N\left[2 m=f_{3}^{\prime}\right]=6 M_{31}(m)$. Thus, using (16), we get

$$
\begin{equation*}
M_{2}^{\prime}(2 m)=3 \phi(2 m) / 10 \tag{25.1}
\end{equation*}
$$

For $M_{2}^{\prime}(m)$, see (12).

$$
\begin{equation*}
M_{2}{ }^{\prime}(4 n)=\phi(n) . \tag{25.2}
\end{equation*}
$$

Also $M_{1}^{\prime}(2 n)=M_{3}(n)$, using (17),

$$
\begin{equation*}
M_{3}^{\prime}(2 n)=\phi(2 n) / 10 \text { or } \phi(n / 2), \tag{26}
\end{equation*}
$$

according as n is odd or even. (For $M_{3}^{\prime}(m)$, see (18).)
The following results are obvious:

$$
\begin{equation*}
M_{4}^{\prime}(2 n)=0 \text { or } \phi(n / 2) \tag{27}
\end{equation*}
$$

according as n is odd or even. (For $M_{4}^{\prime}(m)$ see (19).)

$$
\begin{equation*}
M_{21}(2 n)=M_{1}(n)=\phi(2 n) / 5 \text { or } \lambda(2 n), \tag{28}
\end{equation*}
$$

according as n is odd or even. (For $M_{21}(m)$, see (20).)

$$
\begin{equation*}
M_{22}(2 n)=M_{3}(n)=\phi(2 n) / 10 \text { or } \phi(n / 2) \tag{29}
\end{equation*}
$$ according as n is odd or even. (For $M_{22}(m)$, see (14).)

$$
\begin{equation*}
M_{31}(2 m)=M_{2}(m)=d \phi(m) \tag{30.1}
\end{equation*}
$$

where d is defined in (15).
(30.2) $\quad M_{31}(4 n)=2 \phi(2 n) / 5$ or $\{3 \phi(2 n)+2 \phi(n / 2)\} / 5$,
according as n is odd or even. (For $M_{31}(m)$, see (16).)
7. A Reduction Formula for $\alpha^{\prime}(n)$. A reduction formula for $\alpha^{\prime}(n)$ will later be found nceessary. We see that
$\alpha^{\prime}(2 m)=2 N\left[2 m=\mu_{1}{ }^{2}+\mu_{2}{ }^{2}+8 x_{3}{ }^{2}+4 x_{4}{ }^{2}+4 x_{5}{ }^{2}\right]=4 M_{22}(m)$ and

$$
\begin{aligned}
\alpha^{\prime}(4 n) & =2 N\left[2 n=\mu_{1}^{2}+\mu_{2}^{2}+2 \mu_{3}^{2}+4 x_{4}^{2}+4 x_{5}^{2}\right] \\
& =4 N\left[2 n=f_{21} ; x_{1} x_{2} \text { odd }\right]=8 \alpha^{\prime}(n) .
\end{aligned}
$$

Thus, using (10), we have

$$
\begin{align*}
\alpha^{\prime}\left(4^{\alpha} m\right) & =8^{\alpha} \phi(2 m) / 20, \alpha \geqq 0, \tag{31.1}\\
\alpha^{\prime}\left(4^{\alpha} \cdot 2 m\right) & =4 \cdot 8^{\alpha} a \phi(m), \tag{31.2}
\end{align*}
$$

where a is defined in (6) and $\alpha \geqq 0$.
8. M_{11}, M_{13}, M_{12} Expressed in Terms of α and ϕ.* It is clear that $M_{11}(2 n)=6 N^{\prime}(n)+M_{4}(n)$ where $N^{\prime}(n)=N\left[n=f_{21} ; x_{1}\right.$ odd $]$ $=M_{22}(n)$ or $2 \alpha^{\prime}(n / 2)$ according as n is odd or even, and

$$
\begin{align*}
M_{11}(m) & =\alpha(m), \quad \text { by definition }, \tag{32.1}\\
M_{11}(2 m) & =g \phi(m), \quad \text { where } g=4 / 5,7 / 5, \quad \text { or } 9 / 7 \tag{32.2}
\end{align*}
$$

according as $m \equiv 3(\bmod 4), \equiv 1(\bmod 8)$, or $\equiv 5(\bmod 8)$;

$$
\begin{equation*}
M_{11}(4 n)=12 \alpha^{\prime}(n)+M_{4}(2 n) . \tag{32.3}
\end{equation*}
$$

Now

$$
\begin{aligned}
\alpha(m)=N[m & \left.=f_{11} ; x_{2} \equiv x_{3}(\bmod 2)\right] \\
& +2 N\left[m=f_{12} ; x_{2} \equiv 1(\bmod 2)\right]=\alpha^{\prime}(m)+2 M_{13}(m)
\end{aligned}
$$

[^3](33.1) $M_{13}(m)=\frac{1}{2}\left\{\alpha(m)-\alpha^{\prime}(m)\right\}=\alpha(m) / 2-\phi(2 m) / 40$,
(33.2) $M_{13}(2 n)=M_{4}(n)$,
(34.1) $\quad M_{12}(m)=2 M_{13}(m)=\alpha(m)-\phi(2 m) / 20$,
(34.2) $M_{12}(2 n)=M_{2}(n)$.
9. $M_{a b c}$ Expressed in Terms of α, β^{\prime} and ϕ.*

If $n=m \equiv 1(\bmod 4)$,

$$
M_{13}(m)=M_{444}(m)=M_{122}(m) / 2
$$

If $n=m \equiv 3(\bmod 4)$,

$$
\begin{aligned}
M_{1}(m) & =4 N\left[m=f_{11} ; x_{1} x_{2} x_{3} \text { odd }\right]+4 M_{13}(m) \\
& =8 N\left[m=f_{224} ; x_{1} x_{2} \text { odd }\right]+4 M_{13}(m) \\
& =8 M_{248}(m)+4 M_{13}(m)=2 M_{122}(m)+4 M_{13}(m) .
\end{aligned}
$$

(35.1) $M_{122}(m)=\alpha(m)-\phi(2 m) / 20$ if $m \equiv 1(\bmod 4)$,
(35.2) $\quad M_{122}(m)=3 \phi(2 m) / 20-\alpha(m)$ if $m \equiv 3(\bmod 4)$, (35.3) $M_{122}(2 n)=\lambda(n)$.

Noting that $M_{111}(m)=4 M_{224}(m)=2 M_{122}(m)$, we find

$$
\begin{equation*}
M_{111}(m)=2 \alpha(m)-\phi(2 m) / 10 \tag{36.1}
\end{equation*}
$$

if $m \equiv 1(\bmod 4)$;

$$
\begin{equation*}
M_{111}(m)=3 \phi(2 m) / 10-2 \alpha(m) \tag{36.2}
\end{equation*}
$$

if $m \equiv 3(\bmod 4)$;

$$
\begin{equation*}
M_{111}(2 m)=6 M_{21}(m)=12 a \phi(m) \tag{36.3}
\end{equation*}
$$

where a is defined in (6);

$$
\begin{equation*}
M_{111}(4 n)=\lambda(2 n) \tag{36.4}
\end{equation*}
$$

If $m \equiv 5(\bmod 8)$,

$$
M_{448}(m)=N\left[m=f_{4}^{\prime} ; x_{4} \equiv x_{5}(\bmod 2)\right]
$$

and

$$
\begin{aligned}
4 N[m & \left.=f_{4}^{\prime} ; x_{2} \not \equiv x_{3} \equiv x_{4} \equiv x_{5}(\bmod 2)\right] \\
& =4 N\left[m=x_{1}{ }^{2}+4 \mu_{2}{ }^{2}+16 x_{3}{ }^{2}+4 x_{4}{ }^{2}+4 x_{5}^{2}\right]=2 M_{244}(m)
\end{aligned}
$$

[^4]Then

$$
\begin{equation*}
M_{244}(m)=\beta(m), \tag{37.1}
\end{equation*}
$$

if $m \equiv 1(\bmod 8)$ by definition;

$$
\begin{equation*}
M_{244}(m)=M_{4}^{\prime}(m) / 2=\phi(m) / 14 \tag{37.2}
\end{equation*}
$$

if $m \equiv 5(\bmod 8)$;

$$
\begin{equation*}
M_{244}(m)=M_{22}(m) / 2=\phi(m) / 20 \tag{37.3}
\end{equation*}
$$

if $m \equiv 3(\bmod 4)$;

$$
\begin{equation*}
M_{244}(2 n)=M_{31}(n) \tag{37.4}
\end{equation*}
$$

It is clear that

$$
M_{112}(m)=3 M_{244}(m)+N^{\prime}(m)
$$

where $N^{\prime}(m)=N\left[m=f_{112} ; x_{1} x_{2} x_{3}\right.$ odd $]$.

Now

$N^{\prime}(m)=2 N\left[m=\mu_{1}{ }^{2}+2 \mu_{2}{ }^{2}+8 x_{3}{ }^{2}+2 x_{4}{ }^{2}+8 x_{5}{ }^{2}\right]=M_{22}(m)$, $\phi^{\prime}(m) / 2$, or 0 , according as $m \equiv 3,5$, or $\pm 1(\bmod 8)$. Moreover, $M_{112}(2 n)=M_{31}(n)+3 N\left[2 n=f_{124} ; x_{1} x_{2}\right.$ odd $]=M_{31}(n)+6 N^{\prime \prime}(n)$ where $N^{\prime \prime}(n)=N\left[n=f_{12} ; x_{1}\right.$ odd $]$. Now $N^{\prime \prime}(n)=M_{13}(n)$ if n is odd, $2 M_{22}(n / 2)$ if $n \equiv 2(\bmod 4)$, or $4 \alpha^{\prime}(n / 4)$ if $n \equiv 0(\bmod 4)$.
(38.1) $M_{112}(m)=3 \beta(m), 5 \phi(m) / 14, \phi(m) / 4$, or $3 \phi(m) / 20$,
according as $m \equiv 1,5,3$, or $7(\bmod 8)$;

$$
\begin{align*}
& M_{112}(2 m)=3 \alpha(m)-\phi(2 m) / 10 \tag{38.2}\\
& M_{112}(4 m)=(d+12 a) \phi(m)
\end{align*}
$$

where d and a are defined in (15) and (6), respectively;

$$
\begin{equation*}
M_{112}(8 n)=M_{31}(4 n)+24 \alpha^{\prime}(n) \tag{38.4}
\end{equation*}
$$

(39.1) $\quad M_{114}(m)=3 M_{111}(m) / 4=3 \alpha(m) / 2-3 \phi(2 m) / 40$ if $m \equiv 1(\bmod 4) ;$

$$
\begin{equation*}
M_{114}(m)=M_{111}(m) / 4=3 \phi(2 m) / 40-\alpha(m) / 2 \text { if } \tag{39.2}
\end{equation*}
$$

$$
m \equiv 3(\bmod 4)
$$

$$
\begin{equation*}
M_{114}(2 m)=3 M_{21}(m)=6 a \phi(m) \tag{39,3}
\end{equation*}
$$

where a is defined in (6);

$$
\begin{equation*}
M_{114}(4 n)=M_{1}(n) \tag{39.4}
\end{equation*}
$$

Noting that $M_{118}(m)=2 N\left[m=f_{288} ; x_{2}\right.$ odd $]+3 M_{448}(m)$, we have

$$
\begin{equation*}
M_{118}(m)=2 M_{244}(m)=\phi(m) / 10 \tag{40.1}
\end{equation*}
$$

if $m \equiv 3(\bmod 8)$;

$$
\begin{equation*}
M_{118}(m)=3 M_{244}(m)=3 \beta(m) \text { or } 3 \phi(m) / 14 \tag{40.2}
\end{equation*}
$$

according as $m \equiv 1$ or $5(\bmod 8)$;

$$
\begin{equation*}
M_{118}(m)=0 \text { if } m \equiv 7(\bmod 8) ; \tag{40.3}
\end{equation*}
$$

$$
(40.4) \quad M_{118}(2 m)=3 M_{12}(m)=3 \alpha(m)-3 \phi(2 m) / 20
$$

$$
(40.5) \quad M_{118}(4 n)=M_{2}(n)
$$

Noting that $M_{124}(m)=2 M_{244}(m)$, we have,

$$
\begin{equation*}
M_{124}(m)=2 \beta(m), \phi(m) / 7, \text { or } \phi(m) / 10 \tag{41.1}
\end{equation*}
$$

according as $m \equiv 1(\bmod 8), \equiv 5(\bmod 8)$, or $\equiv 3(\bmod 4)$;

$$
\begin{align*}
M_{124}(2 m) & =\alpha(m) \tag{41.2}\\
M_{124}(4 m) & =g \phi(m) \tag{41.3}
\end{align*}
$$

where g is defined in (32.2);

$$
\begin{equation*}
M_{124}(8 n)=12 \alpha^{\prime}(n)+M_{4}(2 n) . \tag{41.4}
\end{equation*}
$$

Now $M_{128}(m)=M_{122}(m) / 2$ if $m \equiv 3(\bmod 4)$. But if $m \equiv 1$ $(\bmod 4)$,

$$
\begin{aligned}
M_{1}(m)= & N\left[m=f_{1} ; \text { just three of } x_{1}, x_{2}, x_{3}, x_{4} \text { odd }\right] \\
& +N\left[m=f_{1} ; \text { just one of } x_{1}, x_{2}, x_{3}, x_{4} \text { odd }\right] \\
= & 8 N\left[m=f_{224} ; x_{1} x_{2} x_{3} \text { odd }\right]+4 M_{13}(m) .
\end{aligned}
$$

Also

$$
M_{122}(m)=M_{188}(m)+2 N\left[m=f_{224} ; x_{1} x_{2} x_{3} \text { odd }\right]
$$

Therefore

$$
M_{1}(m)-4 M_{122}(m)=4 M_{13}(m)-4 M_{128}(m)
$$

and
(42.1) $\quad M_{128}(m)=3 \phi(2 m) / 40-\alpha(m) / 2$,
if $m \equiv 3(\bmod 4)$;
(42.2) $\quad M_{128}(m)=3 \alpha(m) / 2-\phi(2 m) / 8$,
if $m \equiv 1(\bmod 4)$;
(42.3) $M_{128}(2 n)=M_{2}^{\prime}(n)$.

Since $M_{144}(m)=M_{12}(m)$, if $m \equiv 1(\bmod 4)$, we have
(43.1) $\quad M_{144}(m)=\alpha(m)-\phi(2 m) / 20$ or 0,
according as $m \equiv 1$ or $3(\bmod 4)$;
(43.2) $M_{144}(2 n)=M_{21}(n)$;
(44.1) $\quad M_{148}(m)=2 M_{244}(m)=2 \beta(m)$ or $\phi(m) / 7$,
according as $m \equiv 1$ or $5(\bmod 8)$;
(44.2) $M_{148}(m)=0$ if $m \equiv 3(\bmod 4)$;
(44.3) $M_{148}(2 m)=M_{12}(m)=\alpha(m)-\phi(2 m) / 20$;
(44.4) $M_{148}(4 n)=M_{2}(n)$;
(45.1) $\quad M_{188}(m)=M_{128}(m)=3 \alpha(m) / 2-\phi(2 m) / 8$,
if $m \equiv 1(\bmod 4)$;
(45.2) $M_{188}(m)=0$ if $m \equiv 3(\bmod 4)$;
(45.3) $M_{188}(2 n)=M_{3}^{\prime}(n)$;
(46.1) $\quad M_{222}(m)=M_{112}(m) / 3,3 M_{4}(m) / 4, M_{4}(m) / 2$, or $M_{4}(m) / 4$, that is, $\beta(m), 3 \phi(m) / 20,3 \phi(m) / 14$ or $\phi(m) / 20$, according as $m \equiv 1$, 3,5 , or $7(\bmod 8)$;
(46.2) $M_{222}(2 m)=\alpha(m)$;
(46.3) $M_{222}(4 m)=g \phi(m)$,
where g is defined in (32.2);
(46.4) $M_{222}(8 n)=12 \alpha^{\prime}(n)+M_{4}(2 n)$;
(47.1) $\quad M_{224}(m)=M_{122}(m) / 2=\alpha(m) / 2-\phi(2 m) / 40$,
if $m \equiv 1(\bmod 4)$;
(47.2) $\quad M_{224}(m)=3 \phi(2 m) / 40-\alpha(m) / 2$,
if $m \equiv 3(\bmod 4)$;
(47.3) $M_{224}(2 n)=M_{21}(n)$.

Since $M_{228}(m)=M_{244}(m)$ or $2 M_{244}(m)$, according as $m \equiv 1$ $(\bmod 4)$ or $3(\bmod 8)$,
(48.1) $\quad M_{228}(m)=\beta(m)$ or $\phi(m) / 14$,
according as $m \equiv 1$ or $5(\bmod 8)$;
(48.2) $\quad M_{228}(m)=\phi(m) / 10$ or 0 ,
according as $m \equiv 3$ or $7(\bmod 8)$;
(48.3) $M_{228}(2 m)=M_{12}(m)=\alpha(m)-\phi(2 m) / 20$;
(48.4) $M_{228}(4 n)=M_{2}(n)$;
(49.1) $\quad M_{248}(m)=M_{128}(m) / 2=3 \alpha(m) / 4-\phi(2 m) / 16$,
if $m \equiv 1(\bmod 4)$;
(49.2) $\quad M_{248}(m)=3 \phi(2 m) / 80-\alpha(m) / 4$,
if $m \equiv 3(\bmod 4)$;
(49.3) $M_{248}(2 n)=M_{22}(n)$.

Since $M_{288}(m)=M_{222}(m) / 3$ or $M_{222}(m)$, according as $m \equiv 3$ or $1(\bmod 8)$;
(50.1) $\quad M_{288}(m)=\beta(m), \phi(m) / 20,0$, or 0 ,
according as $m \equiv 1,3,5$, or $7(\bmod 8)$;
(50.2) $M_{288}(2 m)=M_{13}(m)=\alpha(m) / 2-\phi(2 m) / 40 ;$
(50.3) $M_{288}(4 n)=M_{4}(n)$;
(51.1) $\quad M_{444}(m)=M_{13}(m)=\alpha(m) / 2-\phi(2 m) / 40$
if $m \equiv 1(\bmod 4)$;
(51.2) $M_{444}(n)=0$ if $n \equiv 2$ or $3(\bmod 4)$;
(51.3) $M_{444}(4 n)=M_{1}(n)$.

Since $M_{448}(m)=M_{148}(m) / 2$ if $m \equiv 1(\bmod 4)$, we have
(52.1) $\quad M_{448}(m)=\beta(m)$ or $\phi(m) / 14$,
according as $m \equiv 1$ or $5(\bmod 8)$;
(52.2) $M_{448}(n)=0$ if $n \equiv 2$ or $3(\bmod 4)$;
(52.3) $M_{448}(4 n)=M_{2}(n)$;
(53.1) $\quad M_{488}(m)=M_{248}(m)=3 \alpha(m) / 4-\phi(2 m) / 16$,
if $m \equiv 1(\bmod 4)$;
(53.2) $\quad M_{488}(n)=0$ if $n \equiv 2$ or $3(\bmod 4)$;
(53.3) $M_{488}(4 n)=M_{3}(n)$;
(54.1) $\quad M_{888}(m)=M_{288}(m)=\beta(m)$,
if $m \equiv 1(\bmod 8)$;
(54.2) $\quad M_{888}(n)=0$,
if $n \equiv 2$ or $3(\bmod 4)$ or $5(\bmod 8)$;
(54.3) $M_{888}(4 n)=M_{4}(n)$.
10. Some Miscellaneous Results. Letting $f^{\prime}{ }_{a b c}$ denote the form

$$
x_{1}^{2}+a x_{2}^{2}+b x_{3}^{2}+c x_{4}^{2}+16 x_{5}^{2}
$$

and

$$
M_{a b c}^{\prime}(n)=N\left[f^{\prime}{ }_{a b c}=n\right],
$$

we have
(55) $\quad M_{114}^{\prime}(8 n+7)=M_{2}^{\prime}(8 n+7) / 2=\phi(8 n+7) / 20$;
(56.1) $M_{111}^{\prime}(8 n+7)=4 M_{114}^{\prime}(8 n+7)=\phi(8 n+7) / 5$;
(56.2) $\quad M_{111}^{\prime}(4 m)=8 M_{22}(m)+\lambda(m)=12 a \phi(m)$,
where a is defined in (6);
(56.3) $\quad M_{1_{11}}^{\prime}(8 n)=\lambda(2 n)$;
(57.1) $M_{248}^{\prime}(8 n+7)=M_{244}(8 n+7) / 2=\phi(8 n+7) / 40$;
(57.2) $M_{248}^{\prime}(8 n+5)=M_{448}(8 n+5) / 2=\phi(8 n+5) / 28$;
(58) $\quad M_{488}^{\prime}(8 n+5)=M_{248}^{\prime}(8 n+5)=\phi(8 n+5) / 28$.

California Institute of Technology

[^0]: * Presented to the Society, April 5, 1930.
 \dagger National Research Fellow.
 \ddagger See, for example, Kronecker, Journal für Mathematik, vol. 57 (1860), p. 253; J. V. Uspensky, American Journal of Mathematics, vol. 51 (1929), p. 51; B. W. Jones, American Mathematical Monthly, vol. 36 (1929), p. 73.

[^1]: * See, for example, J. Liouville, Journal de Mathématiques, (2), vol. 7 (1862); P. Pepin, Journal de Mathématiques, (4), vol. 6 (1890), p. 5.
 \dagger Since this lemma is very elementary, we shall use it freely without comment.

[^2]: * For complete results see case II below.

[^3]: * In many cases, to save space, results are expressed in terms of $M_{i ;} M_{i}^{\prime}$, $M_{21}, M_{22}, M_{31}, \alpha^{\prime}$ which have been previously expressed in terms of ϕ.

[^4]: * See note on §8.

