GENERALIZATION OF A THEOREM OF KRONECKER

BY B. L. VAN DER WAERDEN
EXTRACT FROM A LETTER TO J. F. RITT

Your theorem on algebraic dependence* is, in the very special case in which all $\alpha_{i}, \beta_{i}, \gamma_{i}$ are powers of y, contained in a theorem of Kronecker. \dagger Emmy Noether communicated to me some years ago a proof of Kronecker's theorem which can be extended as below, to your more general case. This proof is simpler than yours, and gives more information. The products $b_{i} c_{j}$ are not only algebraic, but integral algebraic.

Hypothesis. Let $\beta_{1}, \cdots, \beta_{r} ; \gamma_{1}, \cdots, \gamma_{s}$ be two systems of linearly independent analytic functions of y. Let b_{1}, \cdots, b_{r}; c_{1}, \cdots, c_{s} be indeterminates. Let
(1) $\left(b_{1} \beta_{1}+\cdots+b_{r} \beta_{r}\right)\left(c_{1} \gamma_{1}+\cdots+c_{s} \gamma_{s}\right)=\left(a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}\right)$,
where the α 's are a linearly independent \ddagger set of products $\beta_{i} \gamma_{j}$ in terms of which all such products are expressible, and where the a's are linear combinations of the products $b_{i} c_{j}$.

Conclusion. Every $b_{i} c_{j}$ satisfies an equation of the form

$$
\begin{equation*}
Z^{t}+A_{1} Z^{t-1}+\cdots+A_{t}=0 \tag{2}
\end{equation*}
$$

with every A_{k} a homogeneous form of the kth degree in a_{1}, \cdots, a_{n}, with constant coefficients.

Proof. If the expressions a_{1}, \cdots, a_{n} are all zero for special values $b_{1}^{\prime}, \cdots, b_{r}^{\prime} ; c_{1}^{\prime}, \cdots, c_{s}^{\prime}$ of the indeterminates b_{i}, c_{j}, it follows from (1) that

$$
\begin{equation*}
\left(b_{1}^{\prime} \beta_{1}+\cdots+b_{r}^{\prime} \beta_{r}\right)\left(c_{1}^{\prime} \gamma_{1}+\cdots+c_{s}^{\prime} \gamma_{s}\right)=0 . \tag{3}
\end{equation*}
$$

But if a product of analytic functions vanishes identically, one of the factors vanishes identically. If the first factor in (3) is zero, every b_{i}^{\prime} is zero; if the second factor vanishes, then every c_{i}^{\prime} does. In any case every product $b_{i}^{\prime} c_{j}^{\prime}$ vanishes. This means

[^0]that every zero* of the ideal $\left(a_{1}, \cdots, a_{n}\right)$ is also a zero of the ideal
$$
\theta=\left(\cdots, b_{i} c_{j}, \cdots\right)=\left(b_{1}, \cdots, b_{r}\right)\left(c_{1}, \cdots, c_{s}\right) .
$$

It follows from a well known theorem of Hilbert \dagger that, for some positive integer $t ; \theta^{t} \equiv 0,\left(a_{1}, \cdots, a_{n}\right)$, or, if one designates the products $b_{i} c_{j}$, in any order, by $d_{1}, \cdots, d_{r s}$,

$$
\begin{equation*}
d_{i_{1}} d_{i_{2}} \cdots d_{i_{t}}=\sum e_{i_{1} \cdots i_{t}, k} a_{k} \tag{4}
\end{equation*}
$$

As the a 's are linear combinations of the d 's, the coefficients e in (4) may be taken \ddagger as homogeneous forms of degree $t-1$ in the d 's. If the power products of the d 's of degree $t-1$, written in any order, are designated by g_{1}, \cdots, g_{k}, then (4) may be written in the form $d_{i} g_{j}=\sum g_{l} a_{i}^{\prime}{ }_{j l}$, where the $a_{i j l}^{\prime}$ are linear combinations of the a 's. Elimination of the g's gives

$$
\left|\begin{array}{ccc}
d_{i}-a_{i 11} & -a_{i 12} & \cdots \\
-a_{i 21}^{\prime 2} & d_{i}-a_{i 22}^{\prime 2} & \cdots \\
\cdots & \cdot & \cdots \\
\cdots & \cdot & \cdots
\end{array}\right|=0
$$

This is an algebraic equation for d_{i} of the form (2). The theorem is then proved.

If, now, the indeterminates b_{i}, c_{j} in (1) are replaced by other quantities, for instance functions of x, not necessarily analytic, the a 's in the second member may become linearly independent. If they are all expressed in terms of the linearly dependent ones among them, the second member appears in "reduced form" (On a certain ring, etc., p. 157). Equation (2) holds identically and hence preserves its form when the b 's and c 's are replaced by other quantities, even if the a 's are expressed in terms of the linearly independent ones among them. This proves your Theorem 1 (loc. cit., p. 156) with the additional information that the $b_{i} c_{j}$ are integral algebraic in the a 's.

Groningen, Holland

[^1]
[^0]: * On a certain ring of functions of two variables, Transactions of this Society, vol. 32 (1930), p. 155.
 \dagger Berliner Sitzungsberichte, vol. 37 (1883), p. 957. (Note by J. F. Ritt: This relationship was known to me, but I was not in possession of the elegant methods of proof which Professor van der Waerden uses below.)
 \ddagger With respect to all constants.

[^1]: * A set of values of the indeterminates for which every polynomial in the ideal vanishes.
 \dagger See Macaulay, Modular Systems, p. 46. (J. F. R.)
 \ddagger The equation thus obtained may be written in the form of the DedekindMertens "modulus-equation" $\theta^{t}=\theta^{t-1} \alpha, \alpha=\left(a_{1}, \cdots, a_{n}\right)$, which occurs in Dedekind's proof of Kronecker's theorem.

