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P R O P E R T I E S OF T H E OPERATOR z~v log s, 
W H E R E z=d/dx* 

BY H. T. DAVIS 

1. Introduction. A considerable bibliography with modern in
crements has been built up around the interpretation and use of 
the operators zv and z~v, z=d/dx, where v may assume fractional 
as well as integral values, f The peculiar efficacy of these sym
bols in the solution of integral equations of Volterra type on the 
one hand and in the resolution of difficulties in certain types of 
electrical transmission problems on the other has made a study 
of their properties of more than passing interest. 

The essential peculiarity of the operators zv and z~v regarded 
as analytic functions is found in the fact that they possess 
branch points at the origin. I t becomes of interest, therefore, to 
inquire into the existence of other operators with branch points 
at 2 = 0, as for example log z. Wiener, in a paper which employs 
the Fourier transform of a function as its basis of definition, has 
established a rigorous foundation for the discussion of such 
branch point operators. J He illustrates his method by applying 
it to the operator z112, but fails to give explicit consideration to 
log z. In a subsequent paper F. Sbrana§ has supplied this de
ficiency by means of a method similar to that of Wiener in its 
use of the Fourier transform. 

The original suggestion, however, is due to V. Volterra^" who 
formulated it in a theory of logarithms of composition, which 
he applied effectively in the solution of the integral equation 

* Presented to the Society, April 3, 1931. 
f See for example, J. D. Tamarkin, On integrable solutions of Abel's integral 

equation, Annals of Mathematics, vol. 31 (1930), pp. 218-229. 
| The operational calculus, Mathematische Annalen, vol. 95 (1925-26), pp. 

557-584. 
§ Suil1 operazione infinitésimale nel gruppo dette derivazione, Atti dei Lincei, 

(6), vol. 11 (1930), pp. 364-368. 
\ See V. Volterra and J. Pérès, Leçons sur la Composition et les Fonctions 

Permutables, Paris, 1924, Chap. 8. See also H. T. Davis, The Inversion of 
Integrals of Volterra Type, Indiana University, 1927, pp. 62-66. 
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ƒ(*) = f " [log ( * - * ) + C]«(0<8, /(0) = 0, 

where C = limVsssl-T
f(p)/T(p) =0.5772157 • • • (Euler'sconstant). 

I t is some consequences of this suggestion, cast into the nota
tion of derivatives, which we shall employ in this note. The 
present investigation will be limited to the formal aspects of the 
problem since we shall consider only what might be termed the 
operational-theoretic properties of the symbols. 

2. The Definition of z~v log z and its Inverse. As is well known, 
generalized integration is defined by means of the formula 

•«(30= I {O - ty-1/v(v)}u(t)dt) 

where the symbol —» is used to denote "operating upon." This 
becomes the definition of Riemann for c = 0 and the defini
tion of Liouville for c = — oo. Adopting the former for 
our present purposes, we replace u(t) by e(t~x)z—>u(x) and thus 
attain the operational identity 

J "* X / » X 

{(x - t)'~le<l—>*/r(v)}dt=\ {s"-h-"/T(v)}ds. 
0 *^0 

Let us now regard both terms of this equation as functions of 
the continuous variable v and differentiate with respect to it. 
We thus obtain 

J» X 

[sv~le-**{\l/{v) - log s}/T(v)]ds9 
o 

where yp{v)=T'(v)/T(v). 
The formal reciprocal (the inverse operator) of this function 

is obtained by integrating z~^v with respect to JJL from 0 to oo. 
We thus find 

J
» 00 /» 00 

z-*-ldii = zv/\og z = zv+1 I \(s)e~"ds, 
0 • ' O 

where we use the abbreviation 

(3) \(s) = f {s"/Tfa+l)}dp. 



470 H. T. DAVIS [June, 

It is easily proved that the function X(s) is asymptotic to e9 

in the positive interval. To see this we apply the Maclaurin 
integral test* for convergence to the series es = l-\-s-\-s2/2\ 
+ s 3 / 3 ! + • • , and thus obtain the inequality 

es - 1 ^ \(s) ^ e\ 

Dividing by e\ we have 

1 - e~* ̂  é~s\(s) ^ 1, 

which, for large positive values of s, establishes the desired 
property. 

3. Generalizations. The definitions of the preceding section 
may be generalized in a useful way as follows. Let us denote by 
p the derivative operator p = d/dv, and by <t>(p) a power series 
in p. We may then write 

<j>(p) -> z~v = <j>(p) -+ I { O - ty-l/T(v)} e^-^'dt, 
Jo 

from which we derive 

J» X 

\4>{p) -> O - O'-VrM}^'-30 '*. 
0 

For example, if c/)(p) =p2, we obtain from (4) the formula 

:-"iog2z = I ^-1^-^{iog2^~2^Wiog^ + ^2W-)/' ,W}^/rW, 

sv-le~8z{log2 ^ - ^ ; ( ^ ) } ^ / r ( i'). 
0 

Similarly for the generalization of formula (2) we multiply 
z-n+v by 0(^) a n ( j integrate from 0 to oo. We thus obtain 

(6) 2-+1 I r r-^GOd/i = Z-+1 I «<«-•>•!(* - <)#, 
* / 0 •* 0 

where we abbreviate by means of the formula 

i(s) = f {^/rHi)|*. 
^ 0 

0' 

(5) 

* T. J. Bromwich, Infinite Series, 2d ed. (1926), p. 33. 
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An example useful to us later is derived from the function 
0(ju) = eafl. We are thus able to derive 

z1 v+l 

(7) 

r% oo /» oo 

I z^~le{ix)dix = zv I e^os'^dfx = zv/(a - log z) 
J o *J o 

where we write I(s) = / 0 ° ° { e a v / r ( M + l ) }dfx. 

4. Properties of the Operators. In the subsequent use of the 
operators defined in the preceding sections it will be important 
to know the order in which they may be applied. This question 
is answered in the following theorems. 

THEOREM 1. 

(8) ar" -» (z~v log z) = z-^v log z. 

PROOF. By definition we have 

s - , _» (2-v log z) = F {(3 « /)M-i/r(M) }* f {*(*) 
fc'O «^ 0 

— log (t — s)}(t — s)v-le^-x)zds, 

o *J« 

- log (* - s)} (* - *)^(* - sy-Ht/ [r(M)r« ]. 
Making the transformation yss(t — s)/(x — s)t we can write 

this in the form 

(9) ar" -» (2~" log z) =* f <*<•-*>*/(* - # / [ r ( / i ) r W ] , 
Jo 

where we have 

j(x - 5) = (* - 5)H^i{^)rOi)rw/ro» + 0 

- J log [(* - s)y](l - yy-ly-ldy). 
•J 0 
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From the identity 

f log y(l - yy-iy-Hy = {*« - *(/* + „) }*(/*, *),* 
•Jo 

where i?Gu, i>) is the Eulerian integral of first kind, we can then 
write 

J{x - s) = O - sy+v~lB(ix, v) {̂ (ju + v) - log (a - s)}. 

When this function is replaced in (9) we see that the integral 
reduces to the definition of z~^~v log z which establishes the 
theorem. 

THEOREM 2. 

(10) z~v log z —> 2T" = sr" —» s-" log z = ar"-" log z. 

PROOF. Giving our attention to the left member we have, by 
definition, 

z~v log * —» ar" = z~v log z -» I (a — s)"-1e(M)*<fc/rG0 
Jo 

J» # 
O - O"- 1 ^*» - log (s - t)}dt 

o 

• f (/ - sy~le^-^zds/[Y{ix)Y{v)} 
Jo 

J» a; 

e(s~x)zds 
o 

. ƒ * {*« - log (*-/)}(*- o^a - ^"W[r(/i)rWj. 

Making the transformation y:s=(t — s)/(x — s), we can then write 

(11) 2~" log s -» ar" = f e^-^eK{x - j ) * / [ r W r W ] , 
J o 

where we abbreviate as follows : 

K(x - s) = (a - 5)"+"-1 f {iKiO(l - y ) ' - 1 ^ 1 

J 0 

* See N, Nielsen, Handbuch der Gammafunktion, Leipzig, 1906, p. 172, 
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— log(a —s)(l - ^ ) " - 1 ^ - 1 - l o g ( l - y)(l - y)v~ly^l)dy 

= (x - ^ " " T W r W [iK/z + v) - log (x- s)]. 

When this is substituted in (11), the integral becomes the 
definition of z~^~v log z. But, by Theorem 1, this is equivalent 
to 0~/i-->2~,, log zy which completes the proof. 

THEOREM 3. 

(12) z~v log z -> sr" log z = z~»-v log2 0. 

PROOF. We have, by definition, 

z~v log 2 —» 2_/i log 0 

= f ( s - O ^ ^ M -log (*-*)] 

• I (/ - sy-x\^{\x) - log (/ - s)]e(s~x)zds, 
J o 

/» * 
= I e(*~x)zds 

Jo 

• f \ x - ty-\t - s)*-1 M O - log ( * - o ] [̂ o*) - log « - s) ]dt. 

Employing the transformation y = (t — s)/(x — s), we find 

z~v log z —> sr" log z = I e ^ - ^ Z , ^ — s)<fc, 
Jo 

where we abbreviate thus : 

L(x - s) = (x - 5)^+"-1 I y*-i(i - y ) " - 1 ^ ) - log (x - 5) 
•^ 0 

(13) 
- log (1 - y)] [IKAO - log (a? - s) - log y]<ty. 

Computing the partial derivatives ôJ3(jii, v)/dfx, dB/dv, and 
d2B/dixdv, where S (M, *>) = / O y - H l - y ) ' " 1 ^ we get the in
tegrals 
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log y{\ - yy-^-Hy = \*{v) - <A(M + v))B{^ V), 

(14; | ^ 0 

J log y log (1 - y)(l - yy-iy^dy = {iK/MM 

° - [*(/0 + *«]*(/* + *) + \KM + v) 

When the integrand of (13) is expanded and the values of (14) 
substituted, we get 

L(x - $ ) = ( * - sy+^Bbi, v) [log2 (x - s) 

- 2^(M + *>) log (* - s) + ^2(/x + v) - *'(/* + 0 ] . 

From this, taking note of (5), we derive the proof of the theo
rem. 

THEOREM 4. 

ST' logn Z - » 2T* logm 2 = ST"-" l og n + m 2, 

wftere w and m are positive integers. 

PROOF. In the proof of this theorem, which is seen to include 
the preceding as a special case, we shall employ a slightly dif
ferent argument. We have, by definition, 

z~" log71 z-* z"» logm z 

Œ ( _ i)n+» ( Ux- ty-l/T(v))dt 
dvnJQ 

{(* ~ sy-l/T(fM)}e^-x)zdsy 

dfxmJ0 

= (— l)n+m I e^~~x)'ds 
Jo 

• ——{(x-i)*-i(t-sy-*/[rQx)r(,v)]}dt. 
Js dvndfj,m 
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Making the customary transformation, we find 

Z~v logw Z —> 2T" logm 2 

= (— l)n+w I e(8~x)zds 
Jo 

»1 ^n+rj 

X 
n+?n_ 

o óVwd/i 

dn+ 

•{(x - sy+^W - y)v-1yfi~1/[T^)T(p)\\dt 

I *<•-*>«{(x - sy+*-l/T{fl + v))ds 
Jo 

= z-v-» logn+m z, 

which was to be proved. 

5. The Rule of Leibnitz, In the application of operators the 
following generalization of the formula of Leibnitz for the nth 
derivative of a product is often of great importance : 

(15) F(x, z) —>uv = vF(x, z) —>u + v'FM'(x} z) —> u/1 ! 

+ v"F."(x,z)-+u/2l + 

where we employ the abbreviation FJn)(x, z) =dnF(x, z)/dzn.* 
Although it has been proved that this formula applies when 

F(x, z) s F(z) is a rational function of z, existing discussions of 
its validity do not include operators of the form z~v log z. I t 
therefore becomes of interest to prove the following theorem. 

THEOREM 5. The generalized Leibnitz formula (15) applies 
when F(x, z) = z~v log z. 

PROOF. By definition, we have 

z~v log z -> uv = I (x - ty~l{\p(v) - log {x - t)}u{t)v(t)dt/T(v) 

{*(*) - log (x-t)}u(t) 

• < ]£><»>(*)(* - /)H-»-I(- i )v»i |* /rw. 

* This formula was originally due to C. J. Hargreave, London Philosophical 
Transactions, vol. 138 (1848), p. 31. See also S. Pincherle, Opérations fonction
nelles, Encyclopédie des Sciences Mathématiques, part 2, vol. 4, No. 26, in 
particular p. 10. 

-ƒ ' 
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But since \p(v) =if/(p + l) — l/v, F(p) =T(v+l)/p, we can write 

y^ < log (x — t) 

*> (y + 1) (v + n — 1) ) 

v(v + 1) • • • {v + n - 1) 
(a - /)"+n-i(_ \yu(t)dt 

T(v + ri)n\ 

= v{x)z~v\ogz + X)(— l )V w ) (#) 
L n=l 

{*("+!) • • • (v+n—l)z-v-nlogz^Pn(v)z-v-n-1} 

ni 

where we write 

• - » « ( * ) , 

PiW = l,Pn(v) = (v+l) • • .(„ + » - l ) + ^ + 2) • • .(* + » - 1 ) 

+ K"+!)(" +3) • • •(* + » - 1) + • • • 
+ v(v+l)-'-(v + n-2). 

But the coefficient of v^n){x)/n\ is precisely the wth derivative 
of z~v log ^, which was to be proved. 

The following more general result follows as a consequence of 
the preceding theorem. 

THEOREM 6. The generalized Leibnitz formula applies when 
F(x, z) = z~v logn z, where nis a positive integer. 

PROOF. We employ induction. In Theorem 5 we have shown 
that the theorem is true for n = l. Let us now assume that it 
also holds for n = k. Making the abbreviations <j>(z) =z~v log* z 
and p{z) =log z, we shall then immediately obtain 

p(»)->(*->««0 = P - > { [ » * + V V / 1 I + » , V 7 2 1 + • • • ] - * « ( * ) } . 

But since we have shown above that the theorem is true for 
p(z)f we at once deduce 

p(z) -> (<£ -» u v) = {vp<j> + Ï / ( P V + $ 'p)/ l! 

+ v"(p"4> + 2P'4>' + p<j>")/2\ + . . . } - > u(x). 

But, by Theorem 4, we have p(z)—>4>(z) =p<£. This fact com
bined with the preceding equation shows that the proposition 



I93I.1 PROPERTIES OF AN OPERATOR 477 

is also true for n =k + l. The proof is then completed by induc
tion in the customary manner. 

6. The Bourlet Operational Product. For the application of the 
operator z~v log z to problems in the theory of functional equa
tions it is necessary to know whether it belongs to the class of 
operators the symbolic multiplication of which is determined by 
the Bourlet product: 

(16) S(x, z) -> T(x, z) = [S-T](x, z) = ST + (dT/dx)(dS/dz)/V. 
+ (d2T/dx2)(d2S/dz2)/2\ -\ . 

The following theorem will now be proved. 

THEOREM 7. If S(x, z) and T(x, z) are operators the symbolic 
multiplication of which is given by the Bourlet product, then 
z-v j0gn zs(Xf 2) and z^ logm z T(x, z) are also such operators. 

PROOF. If we abbreviate <j>{z) —z~v logn z and p(z) =s~M log™ 2, 
our problem is to show that 

<l>(z)S-*pT = p[ST + (dT/dx)(dct>S/dz)/ll 

+ (d2T/dx2)(d2<l>S/dz2)/2l H ] . 

To prove this we expand S(x, z) and T(x, z) in the series 
00 00 

S(x, z) = E Sn(x)z*, and T(x, z) = Z Tn(x)z».* 

We can then write 
00 CO 

A(x, z) = (4>S) -> £ PTn(x)zn = £ (*S) ->pr»(*)*". 
n——00 w=—00 

But since we have shown in Theorem 6 the validity of the 
Leibnitz rule for §zn, in particular, and hence formally for 
*]>2n=-«>Sn(x)<l>zn

t in general, we are able to write 
CO CO 

A(x, z) = X) J^(dmTn/dxm)(dm<l>S/dzm)pzn/<ml 
n=—00 m=sQ 

co 00 

= ^2(dm<t>S/dzm) ^£j{dmTn/dxm)pznlm\ 
m=0 7i=—» 

co 

= pJ2(dmS/dzm)(dmT/dxm)/m\. 
ms=0 

We thus attain the desired equation and the theorem is proved. 

* For the generality of these expansions, see C. Bourlet, Annales de l'École 
Normale Supérieure, (3), vol. 14 (1897), p. 150. 
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7. Applications. Three simple examples will now be given to 
show the natural way in which the logarithmic operator may 
be expected to appear in the solution of functional equations. 

EXAMPLE 1. (Volterra's problem.) Solve the integral equa
tion 

f(x) = f* [log (* - t) +A]u(t)dt, f(fl) = 0. 
•Jo 

Writing this equation symbolically, we have 

f(x) = (— z~l log z + az~l) —» u(x), a = A — C (Euler's constant), 

and, by Theorem 7, we find 

u(x) = z/(a — log z) —>ƒ(#). 

The interpretation of this symbol follows at once from (7): 

u(x) = z2 -> I f(t)I(x - t)dt, 
Jo 

Jo 

EXAMPLE 2. (Volterra.) Solve the integral equation 

f(x) = J [log2 O - /) + A log (a - t) + B]u(t)dt. 
Jo 

This equation can be written symbolically in the form 

f(x) = J3_1(l°g2 ^ + a log z + jS) —• u(x)9 

where we abbreviate, 

a = - A - 2* (1), p = 5 + 4*(1) + ^2(1) + * ' U ) . 

The solution then appears in the form 

u(x) = z/(log2 z + a log 2 + jo) —» ƒ(#) 

= *[<Êi/(log « - X0 + <^>2/(log z - X2)] -> ƒ 0 ) , 

where <£i = —02 = l/(Xi —X2), and where Xi and X2 are roots of the 
equation X2+aX+j3 = 0. The solution, when Xi and X2 are dis
tinct, is thus seen to be attainable by means of the operator of 
Example 1. 
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When Xi=X2=X, the preceding solution is replaced by 

u(x) = [z/(logz-\)*]-^f(x) 

«= z2 -> j R(x - *)/W^, 

where 

0 

EXAMPLE 3. Discuss the operator inverse to X(D) = 1—Dt 

D=*xz. This operator is found to be Y(D) = 1 — De~D\\(eD)> 
where we abbreviate 

X 00 

er*dt/t. 

To verify this we compute the Bourlet product (16) and thus 
obtain 

[X-Y] = (1 - D)[l - De~Dli(eD)] 

+ D[e-D\i(eD) - De~Dli(eD) + l ] e 1. 

Employing a well known expansion for the function \i(eD), we 
can write Y(D) in the form, 

Y(D) = l - Z ) e - ö [ C + logZ) + D + jD 2 / (2-2!)+PV(3-3!)+ • • •], 

where C is Euler's constant.* If we note that 

er»F(z) ->ƒ(*) = «r» -* [F(«) -^ ƒ(*)] = lim [F(z) ->ƒ(*)] , 

where JF(Z) is a rational function of 0, and from our definition 
that e~D log z—>f(x)=k (a constant), we may then write 

00 

Y(D)-+f(x)=Ax+ 1 - x l o g x - X ^ n / ( n ) ( 0 ) / [ ( ^ - l ) - ( ^ - l ) l ] , 

where A is a constant. I t can be verified without difficulty that 
this is the operational form of the solution of the differential 
equation u(x)—xuf(x) =f(x). 

WATERMAN INSTITUTE, INDIANA UNIVERSITY 

* See Bromwich, Infinite Series, 2d éd., 1926, p. 334. 


