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SOME T H E O R E M S ON PLANE CURVES 

BY W. V. PARKER 

In applying Abel's theorem to hyperelliptic integrals, we are 
interested in the intersections of certain curves with a curve C 
of the type ;y2 =ƒ(#), where/(x) is a polynomial. The functions 
used in the following are all polynomials of degree indicated by 
their subscripts. If/n(x) =fk(x)fn-k(x) we may without any loss 
o£generality assume that n}zk^n/2 and this assumption will be 
made throughout. 

LEMMA. If C is the curve y2 =fn(x) ^fk(x)fn-k(x), c\ the curve 
y=fk(x) and c2 the curve y=fn„k(x), then all the finite points of 
intersection of c\ and c2 are on C, and the curve S whose equation 
is y~ [fk(x)-{-fn-k(x)]/2 is tangent to C at each of these k points. 

Suppose (a, /3) is any one of the k points of intersection 
of c\ and c2; then ]8 =ƒ*(«) and j3 =ƒ„-*(«) and therefore 
jö2 =fk{a)fn-k{a) =/w(«), that is (a, /?) is on C Obviously 5 passes 
through the k points of interesection of c\ and c2 and hence meets 
C in these k points. Eliminating y from the equations of S and 
C we get 

( 7 * 0 ) +fn-k(x)~]2
 r / ^ r / N rfk(x) -fn-k(x)l2 

I J - fk(x)fn-k(x) = I J = 0 

as the equation giving the abscissas of the 2k points of inter
section of S and C. Since the left hand side of this equation is a 
perfect square each abscissa is counted twice, and therefore 
since, in S, y is a one-valued function of x, S is tangent to C at 
each of these k points. 

As an immediate consequence of this lemma we have the fol
lowing result. 

THEOREM 1. If C is the curve y2 = 4>n(x)} where <f>n(ei) = Q, 
(i = l, • • • , n), and (a, (3), (jS^O), is a point on C, and c\ is the 
curve of the f or m y = <f>k(x) determined by (a, /3) and any k of the 
points (d, 0), and c2 is the curve of the form y = <j>n-k(x) determined 
by (a, j8) and the remaining n — k of the points (e^ 0), then C\ and 
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c2 have all their k points of intersection* on C, and the curve S whose 
equation is y = [</>&(#) -\-<t>n-k(x) ]/2 is tangent to C at each of these 
k points. 

Since 4>n(x) = <t>k(x)<i>n-k(x) for n + 1 values of x, we have 
<t>n{x) =<j>k{x)(j>n-k{x) and the theorem follows from the lemma. 

Tha t all curves 5 of the form y = gk(x) which are tangent to a 
curve C of the form y2 = gn(x) at each of k points can be obtained 
by this process, is a consequence of the following theorem. 

THEOREM 2. If (c^,/?;), (i = l, 2, • • • , k), are k points on the 
curve C whose equation is y2 = gn(x) such that there exists a curve S 
of the form y = gk(x) which is tangent to C at each of these k points, 
and if the curve C\ whose equation is y = hk(x) meets C in the k 
points (cti, Pi) and the point (e\, 0), where e\ is any zero of gn{x)y 

then hk(x) is a factor of gn(x). 

Since S is tangent to C at each of the k points, the equation 
gi{x)— gn(x) = 0 has the roots ai, a2, • • • , cck, each counted 
twice, and since C\ meets S in the k points (c^jS*), the equation 
gk(x)—hk(x) = 0 has the roots ai, a2, • • • , ak. 

We have therefore 

[gk(x) - hk(x)]2 = ll[gk2{x) - gn(x)], 

and hence 

[gk(ex) - hk(ex)]
2 = fx[gk2(ex) - g«(ex)]; 

but hh(e\) —gn(e\) = 0 , hence yu = 1, and we have 

gk
2(x) - 2gk(x)hk(x) + hk

2(x) s gk
2(x) - gn(x), 

or 

gn(x) = hk(x)[2gk(x) — hk(x)]. 

If c\ is the curve y = aoXk+a\Xk~l + • • • +ak~ix+ak deter
mined by the k points (at-, fii) and one of the n points (eiy 0), the 
coefficient a0 may be zero and the degree of the right hand side 
less than k. For suppose we choose a particular one, say eu of 

* Only finite points of intersection are considered here. In certain special 
cases when n is even and k = in, d and c2 may coincide or they may have less 
than k finite points of intersection. The lemma and Theorem 1 are still true for 
these cases when finite points of intersection are considered. 
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the zeros of gn(x) and find that the expression on the right is of 
degree k; then it will have as zeros k of the zeros of gn(x), say 
01,02, • • • , ek. Then the curve y = b0x

k + bixk~1 + • • • + bk-ix + bk 

determined by the k points (a,-, /?;) and one of the remaining 
points {eu 0), say (ek+i, 0), will have its right hand side of degree 
n — k at most. For suppose the right hand side of degree 
m>n — k\ then it will have as zeros m of the zeros of gn(x) and 
and hence at least one of the ei, e2, • • • , ek and therefore 
a0x

k+aixk~1+ • • • +ak = boXk + bixk~1+ • • • +bk for at least 
& + 1 values. But since b0x

k + bixk~1+ • ••+&& has at least one 
zero which is not a zero of aoXk+aiXh~1 + • • • +#& this is im
possible. I t follows as a consequence of Theorem 1 that the de
gree of the right hand side is either kor n — k depending on which 
zero of gn(x) is chosen for determining the curve c\. 

If in the above the degree of hk(x) is k, the degree of 2gk(x) 
— hk(x) will be n — k; if we denote the latter by hn-h(x), we 
shall have gk(x)=[hk(x)+hn-k(x)]/2. That is, the curve 5 is 
y= [hk(x)+hn-k(x)}/2, where the curve y — hk(x) is determined 
by some k of the points (ei, 0) and one of the points (ca, jS»), and 
the curve y = hn-k(x) is determined by the remaining n — k of the 
points (ei, 0) and the same one of the points (ai, /3;). 

Thus far it has not been necessary to say anything about the 
nature of the zeros e\, e2, • • • , en. When these zeros are distinct 
we have the following theorem. 

THEOREM 3. The number of curves of the type y = gk(x) which 
are tangent to a curve C of the type y2 = gn(x) at any fixed point 
(a, ]8) and at k — 1 other points, is CI for k>n/2 and \Cl for 
k =n/2y provided that the zeros of gn(x) are distinct. 

For by Theorem 1 we get a curve of this type corresponding 
to any k of the zeros of gn(x) and by Theorem 2 all curves of 
this type are obtained by this process. I t must be shown, there
fore, that when k>n/2 the same curve cannot be obtained from 
two different sets of k zeros of gn(x). Suppose y = 4>k(x) and 
y =^k(x) are both of degree k and cut out the same set of k points 
(aiy fii) on C; then <j>k(x) and ypk(x) must have at least one zero 
in common and therefore <fik(x) =\f/k(x). If n is even and k = \n, 
then each set of k such points is cut out by two and only two of 
these curves by Theorem 1. 

From Theorem 1, the ordinary construction for drawing a 
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tangent to a conic at a point P on it, when the axes and vertices 
are known, follows immediately. 

The following example is a rather interesting illustration of 
Theorem 1. Let C be the curve 

3,2 = fQ(x) s - x6 + Ux4 - 49x2 + 36. 

The zeros of/6(x) are 1, — 1 , 2, —2, 3, —3. Let the curve 
Ci'.y=Mx) be determined by (0, 6) (1, 0) ( - 1 , 0)(3, 0) and 
the curve c2:y = gz(x) be determined by (0, 6) (2, 0) ( — 2, 0) 
( — 3, 0); then we have 

fs(x) = 2xz - 6x2 - 2x + 6, 

g3(x) 5= — i# 3 — §#2 + 2x + 6. 

These curves C\ and c2 meet on C in three points whose abscissas 
areO, (9 + \ /241) /10, ( 9 - \ / 2 4 1 ) / 1 0 . The curve 5 whose equa
tion is 

ƒ.(*) + «»(*) 3 15 
y — == xd X2 + 6 

2 4 4 
is tangent to C at each of these three points. 

If we take for c\ the curve y = go(x) determined by (0, 6), and 
for c2 the curve y — g^(x) determined by (0, 6) (1, 0) ( — 1 , 0) 
(2 ,0) ( - 2 , 0 ) (3,0) ( - 3 , 0 ) , we get 

1 7 49 
go(x) s 6, ge(x) = x*-\ x4 x2 + 6. 

6 3 6 
The curves Ci and £2 are each tangent to C at each of the three 
points (0, 6) (\/7, 6) ( — \/7, 6) and the curve 5 whose equation 
is 

go(x) + ge(x) 1 7 49 
,̂ — = xb ^ ^4 # 2 + 6 

2 12 6 12 

meets C four times at each of the three points. 
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