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CONVERGENCE C R I T E R I A FOR 
CONTINUED FRACTIONS* 

BY H. S. WALL 

1. Introduction. The object of this paper is to present two new 
criteria for the convergence of the continued fraction 

1 1 1 
F(a, z) = — , 

CL\Z + «2 + OL%Z + 

in which the numbers ai are real and different from zero. 
Necessary and sufficient conditions for convergence have 

been discovered for the case that ou>0 by Stieltjes;f and by 
Hamburger} when a2i+i>0. There seem to be no necessary and 
sufficient conditions known for the general case, although 
several sufficient conditions have been found. Van Vleck§ 
showed that if k is the greatest modulus of the limit points of the 
numbers l/(c^au+i), then F(a, z) converges, except for isolated 
points, within the circle \z \ — l/(4&). Inasmuch as k may be in
finite while at the same time a ; > 0 , ]>^au diverges, it follows 
from the work of Stieltjes that F(a1 z) may converge to an 
analytic limit even when the circular region \z | = l/(4&) vanishes. 
The theorems which I shall give include certain cases of this 
sort. 

2. Notation. Let ; bu 62, 6a, • • • , be two infinite 
sequences of real non-zero numbers connected by the relations 

(1) #2* = 62t+i/(5t__i5i), a2i+i = 62i+2l<kl2, 

where 
b 

ai = 6i + 63 + • * • + 62i+i. 

I t is easily seen tha t if we set 

g% = #2 + #4 + • • • + a>2i, (go = 0), 
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î Mathematische Annalen, vol. 81, pp. 234-319; vol. 82, pp. 120-187. 
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then 

(2) ô] = 6i/(l - 6 ^ ) , 

(3) 62i+i = bia2i/[(l - 6igî)(l - JigiLi)],621+2 = 02*+i(l — &igî) / * i . 

If we are given a set of non-zero a*, it is clearly possible to find a 
set of non-zero bi such that (1) holds. The formulas (3) effect a 
transformation, 

(4) b = [a], 

of the ai into the &»-. By means of (4) a continued fraction F(a, z) 
is transformed into another continued fraction Fib, z). 

Denote by Pf/Qf the nth. convergent of F(a, z). Then certain 
formulas* which I gave in a recent article may be used to con
nect the polynomials Pn

a , Qn
a with the Ph

n, Qh
n, They run as 

follows : 

(5) 

a b 1 . b 

02» = 02n+l/(ZÔn) , 

P2n = 61 Q2n — Pïn+l/àn, 

(?2n-l = 5nÇ2n — Ö2n+l/2, 
a — l a r & & 6 , -1 

P%n-\ — b\ Qln-\ ~ Z[bnP2n ~~ P2r?+1/*J • 

3. Convergence of F (a, z). If a continued fraction F(a, z) is 
transformed by (4) into a continued fraction F(b, z), the equa
tions (5) serve to connect the convergents of P(a, z) with those 
of F(b, z). 

THEOREM 1. Let P(&, z) be the continued f faction obtained from 
F(a> z) by means of the transformation b= [a], and suppose that 
^2\bi\ converges. Then there is a value of zfor which F(a, z) con-
verges if and only if 

(6) lim I gn I = 00 . 

If F(a, z) converges for a single value of z, then there exist two 
entire f unctions p(z) and q(z) such that 

limw zP2n~i = — limn zbnPln = p{z), 

limnzQ2n-i = — limw zbn($2n = q(z). 

* Transactions of this Society, vol. 33 (1931), Theorem 1, p. 514. 
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uniformly over every finite closed region, and hence F(a, z) con
verges over the entire plane except at isolated points, and its limit 
is p(z)/q(z). 

In fact, by a theorem of von Koch,* it follows from the con
vergence of 53 16» | that the sequences of polynomials 

b b 6 b 
Pln-l, Qln-1, •* 2n> Qïn 

converge uniformly over every finite closed region to entire 
limit functions 

r\ s\ R\ S\ 

respectively; and 

(7) rbSb - Rbsb = + 1. 

Now by (2) and (6), 
, . b b b 

(8) limn ôn = 6 , ô = 0. 

We find that if (6) does not hold, the only alternative to (8) is 
that 

(9) limn dl = d\ db y* 0, 

where 8b is finite. 
I t now follows immediately from (5) that 

a b b b a 

limn zQ2n-i = zô S —s = zs , 
a —1 a r 6 , 6 6i a 

limn zP^n-i = bi zs — z[zô R — r J = zr , 
b a 6 a 

— limn zônQ2n = — s = zS , 

— limn zônP2n = bi zS + zrb = zRa, 

uniformly over every finite closed region. When (8) holds we 
find that ra/sa = Ra/Sa

J and hence F(a, z) converges as stated 
in the theorem. The entire functions p{z) and q{z) are as follows : 

p(z) = zrb — ôr1^6, q(z) = — sb. 

When, on the other hand, (9) holds, we find with the aid of (7) 

* Bulletin de la Société Mathématique, vol. 23, pp. 33-40. 
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tha t Rasa — raSa = ô&, and therefore if (6) does not hold, F(a, z) 
diverges for every value of 2.* 

4. Another Theorem on Convergence. Another theorem may be 
obtained if we transform F (a, z) into F(b, 2), and then F(b, z) 
into F(c, z) by means of the transformations b= [a], c— [b]. We 
find with the aid of (2) and (3) that 

(10) b\ = d / ( l - agî), 

(ID 

Also by (5), 

Cia2i-i(l — bigi-1)2 

2 6 
_ Jlfl2t(l - Cigi)2 

C2i+2 ~ ^"Tx^T""^^)' 

Ö2n = (Ôn+lQ2n+2 ~ Qîn+Z/%)/ (zÔn) , 

(?2n+l = ânV^n+l/C2^») — Ôn+lQ2n+2/Z + Q2n+z/Z2, 

(12) P L = (61 - d S)02n + 2 ( C H P L + . 2 - P\n+z/z)/àn9 

PL~l=(bi —CX z)Qln-l + Z (önP2n+l/(Z0n) —ôl+iP2n+2/Z + Pïn+'è/z2) • 

THEOREM 2. Let F(a, 2), P(&, s), P(c, 2) &e connected by the 
relations 

b = [a], c == [J], 

a t ó suppose J^ \Ci \ converges. Then F(a, z) converges over the en-
tire plane except at isolated points in the following cases: 

(i) X^2*+i = 0, (ii) X ^ + i y* 0, ^2b2i+i = 0. 

In every other case F(a, z) diverges for all z. In fact, by (12), 

a c c c 
P2n l~ZÔn+iP2n+2 ~~ P2ri+3~1 

— = brl - crlz + z2\ c —— • 
ö?w L 20n+iÇ2n+2 ~ Q2+nZ J 

Now if (i) holds, the numerator and denominator of the frac
tion on the right converge uniformly over every finite closed 
region to entire limit functions 

— fc, — s% 

* Except possibly a t z = 0. But one may verify directly tha t , a t 3 = 0 , r°/sr> 
has a pole, while Ra/Sa is regular a t 0 = 0. 
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respectively. I t follows that 

limn ~^r = brl - crxz + z2 — > 
Q*n S° 

everywhere except for isolated values of z. Again by (12) 
a 

br 

+ z 
VzPïn+l — ZÔn+i(dn/àn)P2n+2 + (ön/OnM 2n+3 

L zQ2n-hl~ zàn+l((>2n/àn)Qn+2+(àn/àn)Q2n+Z ]• 
Denote by fn(z) the fraction on the right, and suppose that z is 
not a root of sc. We find that the sequence 

M*),f2(z),Mz), • • • 

is compact. Indeed every infinite subsequence contains a sub
sequence with the limit rc/sc, so that the sequence also converges 
to the same limit. Hence 

Pln-i rc 

limn --n— = br1 — crlz + z2—, 
(?2n-l SC 

and therefore F(a, z) converges, except at isolated points. 
If (ii) holds, then we find that]T) \bi | converges, and hence by 

Theorem 1, F(a, z) converges if and only if X ^ 2 Ï + I = 0 . 

5. Example, Let 
a*, if » = 2i, 

if n = 21 - 1, 

where p, a are real and not zero. Then we find that F(a, z) is a 
meromorphic function by Theorem 1 when 

| p\ < 1, | I/o-1 < 1, | pa-2 J < 1; 
and when 

M < i, | I / P | < i , | P V | < l, 

by Theorem 2. Here limn \l/(anan+i) | = °°, and the continued 
fraction does not, in general, satisfy any of the criteria men
tioned at the beginning of this article. 
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