A NON-DENSE PLANE CONTINUUM†

BY J. H. ROBERTS

The author has shown \ddagger that if M denotes a square plus its interior in a plane S, then there exists an upper semi-continuous collection \S G of mutually exclusive non-degenerate subcontinua of M filling up M and such that G is homeomorphic with M. The present paper gives a continuum M which contains no domain yet which has the above property.

Let I denote the interior of a square J in a plane S. Let G be an upper semi-continuous collection of mutually exclusive non-degenerate continua filling J+I such that G is homeomorphic with J+I. Since no element of G separates S it follows that if S' denotes the collection consisting of the elements of G and the *points* of S not belonging to any element of G, then S' corresponds to S under a continuous one to one correspondence U, and G corresponds to J+I. Let G^* denote the subcollection containing every element of G which contains a point of G. The set G^* is a simple closed curve. Moreover every element of G^* has in common with G either an arc or a single point. Then there exists G a continuous one to one correspondence G between G^*

[†] Presented to the Society, August 30, 1929.

[‡] On a problem of C. Kuratowski concerning upper semi-continuous collections, Fundamenta Mathematicae, vol. 14 (1929), pp. 96-102.

[§] For a definition of this term, and of the notion *limit element*, see R. L. Moore, *Concerning upper semi-continuous collections of continua*, Transactions of this Society, vol. 27 (1925), pp. 416–428.

See R. L. Moore, loc. cit., Theorem 22.

[¶] This may be shown as follows. Let s_1, s_2, s_3, \cdots denote the maximal arcs which are subsets of J and which belong to some element of G^* . For each i and j $(i \neq j)$ the set $s_i \cdot s_j$ is vacuous. Let $v(s_i)$ denote the length of the interval s_i , and v(J) the length of J. Suppose first that $v(J) - \sum_{i=1}^{\infty} v(s_i)$ is a positive number e and let d be a positive number less than e. A sequence of segments t_1, t_2, t_3, \cdots can be defined inductively so that (1) for each i there is a j such that t_j contains s_i , (2) no two of the segments t_1, t_2, t_3, \cdots have any point in common, and $(3) \sum_{i=1}^{\infty} v(t_i)$ is less than v(J) - d. Since the point set $J - \sum_{i=1}^{\infty} t_i$ has positive measure it is uncountable. Now the curve J can be transformed into itself in such a way that the sum of the lengths of the images of the intervals s_1, s_2, \cdots is less than the length of J. Hence in any case there is a set of segments

and J such that for uncountably many points x of J it is true that $U_1(x)$ (the element of G^* corresponding to the point x) contains x. The correspondence U_1 can† be extended so that there results a continuous one to one correspondence π between G and J+I such that for uncountably many points P of J it is true that $\pi(P)$ contains P.

Now only a countable number of elements of G contain domains. Let H denote J+I and let x denote any point of H. Let $C_1(x)$ denote x. Let $C_2(x)$ be the continuum $\pi(x)$. Let $C_3(x)$ denote the sum of all continua $\pi(y)$ for all points y of $C_2(x)$. In general let $C_{n+1}(x)$ denote the sum of all elements $\pi(y)$ for every point y of $C_n(x)$. If x and y are distinct points of H, then $C_n(x)$ and $C_n(y)$ are mutually exclusive continua. Hence, for each n, the set of all points x such that $C_n(x)$ contains a domain is countable. Hence there exist two points P_1 and P_2 of I, and a simple continuous arc I from I to I such that if I is any point of I then, for every I contains no domain, and I contains I cont

There exists an infinite set of simple closed curves J_1 , J_2 , J_3 , \cdots such that (1) $J_1 = J$, (2) $J_1 \cdot J_2$ is the point P_2 , and in general, for each i, $J_i \cdot J_{i+1}$ is a single point P_{i+1} , and $J_i \cdot J_{i+k} = 0(k > 1)$, (3) no point of J_k lies within J_i , and (4) only a finite number of the curves J_1 , J_2 , J_3 , \cdots have points within any circle. For each i let π_i be a continuous transformation throwing

 t_1, t_2, t_3, \cdots satisfying (1) and (2) above, and such that $J - \sum_{i=1}^{\infty} t_i$ is uncountable, and indeed if $v(J) - \sum_{i=1}^{\infty} t_i v(s_i)$ is a positive number e, then the segments t_1, t_2, t_3, \cdots can be so chosen that the measure of the set $J - \sum_{i=1}^{\infty} t_i$ is as near e as we please. If P is any point of $J - \sum_{i=1}^{\infty} t_i$, then let C(P) denote P. Consider every interval s_i that is a subset of t_i as an element, and every other point of \bar{t}_i as an element. Then the collection of elements so obtained is an arc, and can be made to correspond to the arc \bar{t}_i of J. Thus if T denotes the collection of intervals s_1, s_2, s_3, \cdots and all other points of J, then there exists a correspondence C such that (1) C(T) = J and (2) for uncountably many points P of J the point P is an element of T, and C(P) = P. But if x is any element of T, then there is a continuum g_x of G^* containing x, and the correspondence D throwing g_x into x, for every element x of T, is continuous. Then if g is an element of G^* the correspondence throwing g into C[D(g)] is a continuous one to one correspondence between G^* and J and satisfies the required conditions.

[†] See Schoenflies, Beiträge zur Theorie der Punktmengen, Mathematische Annalen, vol. 62 (1906), pp. 286-328. See also J. R. Kline, A new proof of a theorem due to Schoenflies, Proceedings of the National Academy of Sciences, vol. 6 (1920), pp. 529-531.

H into J_i plus its interior in such a way that $\pi_i(P_1) = P_i$, and $\pi_i(P_2) = P_{i+1}$. For each n let E_n denote the sum of all continua $C_n(x)$ for every point x of the arc T. Note that E_{n+1} can be obtained by adding together all continua $\pi(y)$ for all points y of E_n . Let M_n denote $\pi_n(E_n)$ and let M denote $M_1 + M_2 + M_3 + \cdots$. Then M is the continuum desired.

Since no one of the sets M_1 , M_2 , M_3 , \cdots contains a domain, the continuum M contains no domain. Let R denote P_1+P_2 $+P_3+\cdots$ and let x denote any point of M-R belonging to $M_i(i>1)$. Let y_x be the point of H such that $\pi_i(y_x)=x$. Let $g_{y_{\pi}}$ denote the element of G corresponding, under π , to the point y_x , and let h_x denote the continuum $\pi_i(g_{y_x})$. In case h_x does not contain P_i or P_{i+1} , then let k_x denote k_x . For each i (i>2) there is a point x_{i-1} of M_{i-1} , and a point \bar{x}_i of M_i such that both the sets $h_{x_{i-1}}$ and h_{x_i} contain P_i . Let k_{P_i} denote $h_{x_{i-1}} + h_{x_i}$. For some point x of M_2 the set h_x contains P_2 . Let k_P , denote h_x plus the arc T. Then M is the sum of the elements of an upper semicontinuous collection G' of mutually exclusive continua, every element of G' being a continuum k_Q for some point Q of M. The elements k_{P_2} , k_{P_4} , k_{P_5} , \cdots are each homeomorphic with the sum of two elements of G and every other element of G' except k_{P_n} is homeomorphic with some one element of G. Every element of G' is a nondegenerate continuum. For each i (i>1) let G_i' denote the collection of all elements k_P of G' for all points Pof M_i . Then G_2' is homeomorphic with the arc M_1 , G_3' is homeomorphic with M_2 , G_4' with M_3 , and so on indefinitely. Moreover, G_i' and G'_{i+1} have exactly one element in common, which corresponds to the common point of M_{i-1} and $M_i(i>1)$. Thus G and M are homeomorphic.

A bounded continuum with the same property may be obtained if condition (4) satisfied by the curves J_1, J_2, J_3, \cdots is replaced by the following: (4) J_1, J_2, J_3, \cdots is a contracting sequence having P_1 as sequential limit point. A continuum so obtained will have exactly two complementary domains in the plane S.

THE UNIVERSITY OF TEXAS