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ON A THEOREM OF VON STERNECK
BY D. H. LEHMER*

1. Introduction. In 1894 von Sterneckt{ gave an interesting
theorem which is essentially as follows.

THEOREM 1. Let f and g be any numerical functions and con-
sider the function h defined for all positive integers n by the equa-
tion

h(n) = 227(D)g(h),

the summation extending over all (i, j) whose L.C.M. is n. Next
write F(n) =) _f(8), G(n) =_g(8), H(n) =) _h(8), where § ranges
over all the divisors of n. Then F(n)G(n) =H(n).

It is the purpose of this note to supply the background for
this theorem and to give a very simple proof of a theorem in-
cluding among other special cases von Sterneck’s theorem.

In a recent paper] the author has considered the class of
functions ¥/(x, ¥) which are subject to the following conditions
or postulates.

PosTULATE A. If x and vy are positive integers, so is Y(x, v).

PosTULATE 1. For each integer n>0, the equation Y(x, y) =n
has but a finite number of solutions (x, v).

PosturaTe II. ¥(x, y) =¢(y, x).

Posturate IIL. ¢ (Y (x, v), 2) =y (x, ¢ (v, 2)).

PosturLaTE IV. ¥(x, 1) =n, implies x =n.

The solutions x of Y(x, n) == are called the associates of n.
For the purposes of this paper we add the following postulate.

PostuLATE B. Y(x, ) is not an associate of n, when neither x
nor y are associates of n.

* National Research Fellow.

T Monatshefte, vol. 5 (1894), p. 265. See also Dickson, History of the
Theory of Numbers, vol. 1, p. 152. Von Sterneck’s theorem is stated in terms of
k independent functions instead of 2, as above. There is very little trouble in
extending Theorem 1 and also Theorem 4 to this more general case. To avoid
the consequent typographical complications, however, we leave this part to the
reader.

f Transactions of this Society, vol. 33 (1931).
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2. Examples of Y-Functions. To each such ¢-function there
corresponds a type of arithmetic of numerical functions. Only
two yY-functions are well known, and these lead to familiar
branches of the theory of numbers. These functions are x+y—1
and xy. Much less familiar is the case® ¥ (x, v) = [x,y],the L.C.M.
of x and y. Perhaps the simplest example of all is ¥(x, y)
=max (x, ). This case seems to have attracted no attention.

THEOREM 2. The most general polynomial satisfying the above
postulates is

Axy — A - D@ +y—1),
where A is a non-negative integer.

Proor. Any polynomial P(x, y) must be symmetric by
Postulate III. If d is the degree of this polynomial in each vari-
able, then comparing the degrees in x of both sides of

P(P(x, y), 2) = P(x, P(y, 2)),

we have d2=d. Now d#0 because ¥ =constant fails to satisfy
Postulate IV. Hence d =1, and P(x, y) is bilinear. Writing

P(x,y) = Axy + B(x + 3) + C,
and using Postulate IV we find that B=1—4 = —C. Hence
P(x,y) = Adxy — (4 — D+ y—1).
This polynomial satisfies the postulates if and only if 4 is an
integer =0.

3. Factorable Y- Functions. Given a y-function, the fundamen-
tal theorem of arithmetic enables us to write down as many
other y-functions as we please. The method is as follows. Every
positive integer # may be uniquely described by giving the
exponents 7, to which the vth prime p, appears as a factor of
n=]Ip,mvfor v=1, 2, 3, - - - . Let ¢1(x, y) be given. We define
Ya(x, ) by

(1) Valx, 9) = o I1po, IIpot) = IIpohrlettowtn=t,

* Von Sterneck seems to have first used the function L.C.M. in this connec-
tion. The fundamentals of the L.C.M. calculus are developed in a recent paper,
American Journal of Mathematics, vol. 53 (1931). See also a paper by E.
T. Bell, this Bulletin, vol. 37 (1931), p. 85.
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Such a Y-function is called factorable. As may be verified, ¥
satisfies the above postulates provided of course ¥ does also. Of
the functions mentioned in §2, only two are factorable, namely
xy and [x, y], and these are derived from x4y —1 and max (x, y)
respectively. These factorable functions in turn produce other
factorable functions, namely,[] p,#vtvetavve* and I] p,levtl vot1l-1
and so on. The general polynomial y-function gives rise to
[1p,=»tvr+420vs, The process may be reversed and carried back
until a non-factorable function is reached.

Instead of representing # as a product of powers of primes we
may use its digits when written to the base 10, for example.
Thus 7= y-on,10", 0=%,<9. From the function ¥:(x, y)
=max (x, y) we derive

Yol + 1,y + 1) =14+ D max (x, y,)10".
r=0

4. The Main Theorem. We shall first prove the following
theorem.

THEOREM 3. ¥(x, ¥) s an associate of n if and only if both x
and y are associates of n.

ProOF. Suppose first that both x and y are associates of #.
Then by Postulate I1I,

‘p(‘[/(x’ 3’), ”) = 'p(x: ‘P()’, n)) = ¢(x’ ﬂ) = n.

Hence ¢¥/(x, y) is an associate of #. Next suppose that one vari-
able, say v, is, and x is not an associate of . Then we can write

YW(x, 9), n) = ¥(x, ¥(y, ) = ¥(x, n) & n.

Hence y¥(x, ¥) is, in this case, not an associate of #. Postulate B
now completes the proof of the theorem. We now pass to the
proof of the main theorem.

THEOREM 4. Let f and g be any numerical funcitons and con-
sider the function h defined for all positive integers n by the equation

2 h(n) = 2°f(i)g(f),

* This function is not too complicated to give an interesting type of arith-
metic, some details of which are given in the Transactions of this Society. The
value of this function depends upon the multiplicative properties of exponents
of the primes dividing x and ».
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the summation extending over all (¢, j) for which Y (3, j) =n. Next
write F(n) =_f(a), G(n) =2_g(a), H(n) =p_h(a), where a ranges
over the associates of n. Then F(n)G(n) =H(n).

Proor. Let the function €,(m) have the value 1 or 0 according
as m is or is not an associate of #. Then if x and y are any positive
integers,

©)) e(®)e(y) = e(¥(x, 9)).

In fact this follows at once from Theorem 3. Hence we can write

F(m)G(n) = D f(a) 2 gla) = gﬂx)en(x) ggmen(y)

= 2 f(®)g(»e(x, 9))
gem) 2@,  Wlx, ) =m),

2 en(m)h(m) = 3 h(a) = H(n),

m=1

which is the theorem.

5. Examples of Theorem 4. In case Y(x, vy) is a polynomial
P(x, v), the preceding theorem is trivial. In fact the equation
P(x, n) =n is linear in x and hence has the single solution x=1
required by Postulate IV. That is, 1 is the only associate of .
Theorem 4, in this case, simply states that f(1)g(1) =%(1), which
is (2) written for =1. It may be shown that if ¢, is such that 1
is the only associateof n, (n=1,2, 3, - - - ), then the same is true
of the factorable function ¢, defined by (1). Hence Theorem 4 is
trivial for a Y-function which is derived in this way from a poly-
nomial.

Let ¢(x, y)=max (x, y). Then the associates of % are
1,2, 3, - - -, n. Hence if we write

POy = 30, 6 = e,
Theorem 4 asserts that
kzi:{f(k)G(k) + g(k)F(k) — f(k)g(k)} = F(n)G(n).

In case Y¥(x, v) =[x, v], the associates of # are its divisors.
Theorem 4 then becomes von Sterneck’s Theorem 1.
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