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ON A T H E O R E M OF VON S T E R N E C K 

BY D. H. LEHMER* 

1. Introduction. In 1894 von Sterneckf gave an interesting 
theorem which is essentially as follows. 

THEOREM 1. Let ƒ and g be any numerical functions and con-
sider the f unction h defined f or all positive integers n by the equa­
tion 

*(») = T,fWg(J), 
n 

the summation extending over all (i, j) whose L.C.M. is n. Next 
write Fin) =53/(S), Gin) =]C&(ô), H(n) =^2h(8), where 5 ranges 
over all the divisors of n. Then F in) G in) =H(n). 

It is the purpose of this note to supply the background for 
this theorem and to give a very simple proof of a theorem in­
cluding among other special cases von Sterneck's theorem. 

In a recent paperj the author has considered the class of 
functions ^(x, y) which are subject to the following conditions 
or postulates. 

POSTULATE A. If x and y are positive integers, so is \f/ix, y). 
POSTULATE I. For each integer n>0, the equation ^(x, y) =n 

has but a finite number of solutions (#, y). 
POSTULATE I I . ypix, y) =ypiy, x). 
POSTULATE I I I . \p($ix, y), z) =^(#, \piy, z)). 
POSTULATE IV. \f/ix> 1) =n, implies x — n. 
The solutions x of \//(x, n) =n are called the associates of n. 

For the purposes of this paper we add the following postulate. 
POSTULATE B. ypix, y) is not an associate of n, when neither x 

nor y are associates of n. 

* National Research Fellow. 
f Monatshefte, vol. 5 (1894), p. 265. See also Dickson, History of the 

Theory of Numbers, vol. 1, p. 152. Von Sterneck's theorem is stated in terms of 
k independent functions instead of 2, as above. There is very little trouble in 
extending Theorem 1 and also Theorem 4 to this more general case. To avoid 
the consequent typographical complications, however, we leave this part to the 
reader. 

| Transactions of this Society, vol. 33 (1931). 
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2. Examples of x//-Functions. To each such ^-function there 
corresponds a type of arithmetic of numerical functions. Only 
two ^-functions are well known, and these lead to familiar 
branches of the theory of numbers. These functions are x+y — 1 
Sindxy. Much less familiar is the case*\p(x,y) = [#,3/],the L . C M . 
of x and y. Perhaps the simplest example of all is \{/(x, y) 
= max (x, y). This case seems to have attracted no attention. 

THEOREM 2. The most general polynomial satisfying the above 
postulates is 

Axy — {A — l)(x + y — 1), 

where A is a non-negative integer. 

PROOF. Any polynomial P(x, y) must be symmetric by 
Postulate I I I . If rf is the degree of this polynomial in each vari­
able, then comparing the degrees in x of both sides of 

P(P(x, y), z) = P(x, P{y, z)), 

we have d2=d. Now d^O because ^ = constant fails to satisfy 
Postulate IV. Hence d = 1, and P(xf y) is bilinear. Writing 

P{x, y) = Axy + B(x + y) + C, 

and using Postulate IV we find that B = l — A = —C. Hence 

P(x, y) = Axy — (A — l)(x + y — 1). 

This polynomial satisfies the postulates if and only if A is an 
integer ^ 0 . 

3. Factorable \f/-Functions. Given a ^-function, the fundamen­
tal theorem of arithmetic enables us to write down as many 
other ^-functions as we please. The method is as follows. Every 
positive integer n may be uniquely described by giving the 
exponents nv to which the z>th prime pv appears as a factor of 
n=Tlpv

nv for v = l, 2, 3, • • • . Let ^i(x, y) be given. We define 
fo{x, y) by 

(l) M*, y) = M Upv\ n*.y0 = I IM^' ' ' + 1 M . 

* Von Sterneck seems to have first used the function L.C.M. in this connec­
tion. The fundamentals of the L.C.M. calculus are developed in a recent paper, 
American Journal of Mathematics, vol. 53 (1931). See also a paper by E. 
T. Bell, this Bulletin, vol. 37 (1931), p. 85. 
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Such a ^-function is called factorable. As may be verified, ^2 

satisfies the above postulates provided of course \f/i does also. Of 
the functions mentioned in §2, only two are factorable, namely 
xy and [x, y], and these are derived from x+y — 1 and max (#, y) 
respectively. These factorable functions in turn produce other 
factorable functions, namely ,n^v^ + ^ + * v y v * andn^ [a : t ,+1 ,2 /1 ,+11"'1 

and so on. The general polynomial ^-function gives rise to 
Ylpv*v+w+Axvwt The process may be reversed and carried back 
until a non-factorable function is reached. 

Instead of representing w a s a product of powers of primes we 
may use its digits when written to the base 10, for example. 
Thus w==X^==o^40r, 0^nr^9. From the function \pi(xy y) 
= max (x, y) we derive 

\[/2(x + 1, y + 1) = 1 + ^ m a x (*r, yr)10r. 
r=0 

4. The Main Theorem. We shall first prove the following 
theorem. 

THEOREM 3. \[/(x, y) is an associate of n if and only if both x 
and y are associates of n. 

PROOF. Suppose first tha t both x and y are associates of n. 
Then by Postulate I I I , 

^{yp{x, y), ri) = \[/(x, \p(y, n)) = \l/(x, n) = n. 

Hence \f/(x, y) is an associate of n. Next suppose that one vari­
able, say yy is, and x is not an associate of n. Then we can write 

$ty(x, y), n) = yp{x, yp(y, n)) = ^(#, » ) ? * » . 

Hence \p(xy y) is, in this case, not an associate of n. Postulate B 
now completes the proof of the theorem. We now pass to the 
proof of the main theorem. 

THEOREM 4. Let ƒ and g be any numerical functions and con­
sider the function h defined for all positive integers n by the equation 

(2) Kn) - ^f(i)gU), 

* This function is not too complicated to give an interesting type of arith­
metic, some details of which are given in the Transactions of this Society. The 
value of this function depends upon the multiplicative properties of exponents 
of the primes dividing x and y. 
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the summation extending over all (iy j) for which ip(i, j) — n. Next 
write F(n) =Xlf(a)> G(n) =X)g(a)> H(n) =]F)*(a)> where a ranges 
over the associates of n. Then F{n)G(n) =H(n). 

PROOF. Let the function en(m) have the value 1 or 0 according 
as m is or is not an associate of n. Then if x and y are any positive 
integers, 

(3) en(x)en(y) = enfy(x, y)). 

In fact this follows at once from Theorem 3. Hence we can write 

F(n)G(n) = £ƒ(<*) £ f ( a ) = ]£ƒ(*)«»(*) Z f f r K O O 

= lîlf(x)g(y)*n(Wx> y)) 
= J^en(m) Ylf(x)g(y), ( ^ 0 , y) = m), 

m = l 

= Yjen{m)h{m) = X*(<0 = H(n), 
ra=l 

which is the theorem. 

5. Examples of Theorem 4. In case }f/(x, y) is a polynomial 
P(x, 3/), the preceding theorem is trivial. In fact the equation 
P(Xj n) —n is linear in x and hence has the single solution x = 1 
required by Postulate IV. Tha t is, 1 is the only associate of n. 
Theorem 4, in this case, simply states that ƒ (1)^(1) =h(l), which 
is (2) written for n = 1. I t may be shown that if \pi is such that 1 
is the only associate of n, (n = 1, 2, 3, • • • ), then the same is true 
of the factorable function xf/2 defined by (1). Hence Theorem 4 is 
trivial for a ^-function which is derived in this way from a poly­
nomial. 

Let \(/(Xy y) =max (x, y). Then the associates of n are 
1, 2, 3, • • • , n. Hence if we write 

F(n) = tf(k), Gin) = £*(*), 

Theorem 4 asserts that 

£{ƒ(*)(?(*) + g{k)F(k) - ƒ(%(*)} = F(n)G(n). 
k=l 

In case \f/(x, y) = [x, y]} the associates of n are its divisors. 
Theorem 4 then becomes von Sterneck's Theorem 1. 
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