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The proofs for this theorem and the next two are very similar 
to the proofs of the first three and hence will not be given. The 
cases where a cusp falls on the lines Xi = 0 may easily be recog
nized. Thus if any two of t\, h, h are equal, a cusp falls at a ver
tex of the triangle of reference, and if the corresponding pair 
from ri, r2, n are equal, B vanishes. A cusp on the lines #i = 0 
but not at a vertex may be found by noting that h, t2, h are the 
only possible parameters for such a cusp and that the tangent 
line through it is indeterminate. In this case also B may vanish. 

THEOREM 5. If the cubic (3) is cuspidal, B may or may not be 
zero when the cusp is on one of the lines Xi = 0, (i = 1, 2, 3), and B 
is different from zero f or all other cases. 

THEOREM 6. A triangle of reference, circumscribed to any nodal 
cubic, can always be chosen such that B vanishes. 

THE UNIVERSITY OF CALIFORNIA AT LOS ANGELES 
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TO D E T E R M I N A N T S * 

BY L. M. BLUMENTHAL 

1. Introduction. A paper presented to the Accademia dei 
Lincei by B. Segref is devoted to the following theorem, an
nounced by H. W. Richmond :J 

If in a non-vanishing, symmetric determinant of order six, the 
six elements in the principal diagonal are all zero, and the compte-
mentary minors of five of these elements are also zero, then the com
plementary minor of the remaining element must be zero. 

Segre states that the analogous theorem for determinants of 
the second§ and the fourth orders may be immediately verified, 
and the object of his investigation is to ascertain if analogous 
theorems are valid for determinants of other orders. He shows 

* Presented to the Society, September 9, 1931. 
t Intorno ad una propriété dei determinanti simmetrici del 6° ordine, Atti 

dei Lincei, (6), vol. 2 (1925), p. 539. 
t On the property of a double-six of lines, and its meaning in hyper geometry, 

Proceedings of the Cambridge Philosophical Society, vol. 14 (1908), p. 475. 
The statement of the theorem given in this paper contains no explicit hy
pothesis relative to the non-vanishing of the determinant. 

§ The theorem is, of course, trivial for second-order determinants. 
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that such theorems may possibly hold for determinants of the 
eighth order, and that this is the only possible additional exten
sion of Richmond's theorem. 

The purpose of this note is to show by means of examples 
that, far from being readily verified for determinants of order 4, 
the analogous theorem is not true for fourth-order determinants. 
I t follows immediately that the theorem announced is not true 
for determinants of order six, nor the analogous theorem for de
terminants of order eight. 

The emphasis of this note, however, is laid upon a "counter-
theorem"* suggested by considerations in metric geometry (in the 
sense of Karl Menger). 

2. Failure of Richmond's Theorem. Consider the symmetric 
determinant 

[ 0 1 0 0 I 

1 0 1 1 
DA = \ = 1. 

0 1 0 1 
I 0 1 1 0 I 

The complementary minor of the element in the first row and 
first column has the value 2, whereas the complementary minors 
of the other three elements in the principal diagonal are all zero. 
Hence DA is a fourth-order determinant satisfying the hypothe
ses of Richmond's theorem stated for fourth-order determi
nants, and for which the conclusion of the theorem does not 
hold. 

To obtain a sixth-order determinant for which the theorem is 
false, it is only necessary to border the determinant Z>4 obtaining 
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* This theorem was suggested by Karl Menger, to whom I am indebted for 
valuable counsel in preparing this note. 
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Then DQ = — Z>4 = — 1, and the only element in the principal di
agonal that has a non-vanishing complementary minor is the 
element in the first row and the first column. It is clear that a 
determinant of order eight that violates the theorem stated for 
determinants of this order can be formed from D$ in a manner 
similar to the way in which De was formed from £>4. 

3. The Counter Theorem. Segre shows that determinants of 
order 5 may be constructed for which the analogous theorem is 
not valid. He exhibits also a fifth-order determinant that does 
satisfy such a theorem. We shall prove the following theorem. 

THEOREM. If the symmetric determinant 

0 1 1 1 1 

1 0 fi2 fis fl4 

D = | 1 f 21 0 f23 ^24 , (fij = fji), 

1 f81 '82 0 f84 

1 f41 f42 f43 0 

with ri3'>0, (i,j = l, 2, 3, 4), i^j, is different from zero, and the 
complementary minors of four of the elements in the principal 
diagonal vanish, then the complementary minor of the remaining 
element does not vanish. 

Since the elements r^ are all positive, we may set rij — {ij)2, 
where we interpret (ij)2 as the square of the distance between a 
point pi and a point pj of a quadruple pi, p2, pz, p*. Suppose now 
that the conditions of the theorem are satisfied. Then there are, 
a priori, two cases possible. 

CASE A. The four bordered complementary minors all vanish. 
We show then that the fifth minor 

£(Pu Pz> P*> Pa = 

0 (12)2 (13)2 (14)2 

(21)2 0 (23)2 (24)2 

(31)2 (32)2 0 (34)2 

(41)2 (42)2 (43)2 0 

does not vanish. 
Now the vanishing of a bordered minor (a bordered determi-
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nant of three points) means,according to the Heronian formula,* 
that one of the points is between f the two others; that is, that 
the three points are linear. Hence for Case A all four of the 
triples that are selected from the four points pi, pi, pz, £4are 
linear. On the other hand, the determinant D is not zero. This 
implies tha t the four points pi, pi, pz, p± are not linear, but form 
a pseudo-linear quadruple.! Then the following relations sub
sist:! 

(12) = (34) = a (23) = (14) = 

and hence we may write 

£(Pu p2, Pi, Pi) = 

0 

a2 

(a + by 
b2 (o 

= b, 

a2 
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b2 

<> + by 

(31) = 

(a + b)2 
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(24) = a 

b2 

(a + b)2 

a2 

0 

To show this determinant to be different from zero, we con
sider the more general symmetric determinant 

A = 
0 

Ô2 

02 

Ô2 
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7Z 
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f2 

0 

If each row of this determinant be multiplied by the product of 
those three of the six elements not contained in the row, and 
each column of the determinant be divided by the product of 
the three elements contained in the column, it is found that 

* Thus: 
0 
1 
1 
1 

1 1 1 
0 (12)2 (13)2 

(21)2 0 (23)2 

(31)2 (32)2 0 

= [(12)+(23)+(31)][(12) + (23)-(31)] 
• [(12) -(23) + (31)] [(12) - (23) - (31)] . 

t A point pi is said to lie between two points pi, pz if pipi+pipz — pipz. 
% The proof of the existence of such sets of four points, and their characteri

zation is due to Karl Menger, Untersuchungen über allgemeine Metrik, Mathe
matische Annalen, vol. 100 (1928), p. 125. 

§ Menger, loc. cit., p. 127; see also Mathematische Zeitschrift, vol. 33, 
p. 408. 
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1 0 aÇ fc yô \ 

U f 0 yd pe \ 

\ pe yd 0 <*H 

I 78 fc af 0 I 

from which A is readily expressible in the factored form as 

A = («r + fc + 78) («f + 0e - 78) («f - iöe + 78) (af ~ 0c - 7^). 

Turning now to the determinant £(pi, p2, pz, PA) and substi
tuting a = f = a; ($ = e = a + 6; 7 = 8 = 6 in the expression 
for A, we find that 

£(Pi, *2, *s, ^4) = 16a2£2(<z + J) V + ab + b2) 

and hence £ is not zero. 
C A S E B . Three of the four bordered minors are zero, and 

£(pu p2, pz, Pu is zero. We shall show that Case B is impossible. 
From the hypothesis that three of the four bordered minors 

vanish, it follows that for three of the four triples pix, pi2, pit, one 
point lies between the two others. Then only one of the two fol
lowing cases is possible.* 

SUB-CASE a. One point, let us say pi, lies between each two of the 
three others. Since £>(pi, p2, pz, p\) vanishes, the four points do 
not form a pseudo-linear quadruple, and as D does not vanish, 
the four points are not linear. Hence the three points p2, pz, p\ 
are not linear, and the following relations exist: 

(12) = a, (13) = 6, (14) = c, 

(23) = a + b, (24) = a + c, (34) = b + c. 

The determinant D(ph p2, pz, pd now has the form 

10 1 1 1 I I 

1 0 a2 b2 c2 

\ 1 a2 0 (a + b)2 (a + c)2 ; 

1 b2 (a + b)2 0 (b + c)2 

I 1 c2 (a + c)2 (b + c)2 0 I 

* Menger, loc. cit., p. 107. 
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and substituting again in A 

a = a, j8 = ô, 7 = c, ô = a + b, e = a + c, f = b + c, 

we find 

£(Ph P2, pz, PÙ = - 16a2b2c2(ab + bc+ca) ^ 0 , 
which contradicts the hypothesis 

£(£1, £2, £3, i>4)=0. 
Hence this sub-case is impossible. 

SUB-CASE /3. The relations p2 lies between pi and pi\ pz lies be
tween p2 and pi] p± lies between pz and pi subsist] that is} we may 
write 

P1P2 + P2P3 = pip3, 

p2pZ + pZpA = p2ph 

pZp4 + p4pl = Pzpl* 

Then we have 

(12) = a, (13) = a + b, (14) = a + b - c, 

(23) = b, (24) = b + c, (34) = c] 

and the determinant D takes the form 

10 1 1 1 I I 

1 0 a2 (a + b)2 (a + b- c)2\ 

1 a2 0 b2 (b + c)2 . 

1 (a + b)2 b2 0 c2 

11 (a + b - c)2 (b + c)2 c2 0 I 

From this, the determinant £(pi, £2, pz, p*) is found to have the 
value 

£(Pu P*> P*> P*) = 16b2c2(a + b)2(ab + ac + b2) ^ 0, 

which again contradicts the hypothesis that £(pu P%> Pz, PÙ van
ishes. Thus this sub-case has been shown to be impossible, and 
Case B cannot exist. The theorem is then proved. 

Since we have shown that for a determinant satisfying the 
conditions of the theorem the case B is impossible, it follows 
that Case A alone is valid. We have, then, the following corol
laries : 
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COROLLARY 1. A determinant satisfying the conditions of the 
theorem is necessarily of the form 

0 

1 

1 

1 

1 

1 

0 

a2 

Ô2 

c2 

1 

a2 

0 

c2 

b2 

1 

62 

c2 

0 

a2 

1 

c2 

&2 

a2 

0 

where one of the three numbers a, b, c is the sum of the two others. 
COROLLARY 2. There is a double infinity of determinants that 

satisfy the conditions of the theorem. 
COROLLARY 3. If a determinant satisfies the conditions of the 

theorem, then necessarily the unbordered fourth-order principal 
minor is different from zero. 

COROLLARY 4. If D is a determinant satisfying the conditions of 
the theorem, and £ is the unbordered fourth-order principal minor 
of D, then there exist three positive numbers a, b, c, one of which is 
the sum of the other two, such that 

D = - 32a2ôV, £ = - | 0 2 + ab + b2)D. 

In conclusion, the theorem with which this note is concerned 
may be formulated in the following manner: 

If the symmetric determinant 

D = 
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(Uj = ru > 0, i ?* j), 

has all five of the complementary minors of the five elements in the 
principal diagonal zero, then the determinant vanishes. 
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