
IDEALS IN LINEAR ALGEBRAS* 

BY C. C. MACDUFFEE 

1. Introduction. In an algebraic field, and indeed in every com­
mutative domain of integrity, the problem of the greatest 
common divisor and the problem of unique factorization into 
primes are equivalent. That is, the property that every pair of 
numbers in the domain of integrity have a greatest common 
divisor unique up to a unit factor implies the property that 
factorization be unique save for unit factors and order of multi­
plication. In those commutative domains of integrity in which 
these properties do not hold, the introduction of Dedekind 
ideals gives an extended system in which they do hold. 

In a domain of integrity of a non-commutative algebra, the 
existence of the greatest common right divisor and of the great­
est common left divisor does not insure unique factorization. The 
two problems have diverged and it seems very improbable to 
the writer that the same type of ideal system will handle both 
problems. 

The Dedekind ideal is by its very definition connected with 
the problem of the greatest common divisor. This theory, in­
cluding the theory of the class number, seems to extend practi­
cally intact to the non-commutative case. From this stand­
point the theory of ideals in linear algebras is successful. 

Several writers have attempted to apply Dedekind ideals to 
the problems of unique factorization, and in every case the 
result has been of dubious value. The difficulty has always been 
in finding an adequate definition for ideal multiplication. In 
every case so many important properties of ideals have failed 
to generalize that the theory is practically without substance. 
I t would seem that the enlargement of the domain to permit 
unique factorization will have to, be accomplished through other 
agencies than the Dedekind ideal. 

2. Domains of Integrity. The elements of a rational algebra 
3t of order n are given by 

* An address presented at the invitation of the program committee at the 
meeting of the Society in Minneapolis, September 10, 1931. 
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where the basis numbers €1, e2, • • • , en are linearly independent 
with respect to the rational field 9? and the a's range over 3Î. 
The algebra is closed under multiplication, so that there exist 
numbers c^ of 9?, called the constants of multiplication, such 
that 

n 
€iei = z^cuktk, (i, j = 1, 2, • • • , n). 

We assume that multiplication is associative but not that it is 
commutative. We further assume that 21 contains a principal 
unit or modulus. 

I t is evident that if et = Ö*"1, where 6 is a root of an irreducible 
equation of degree n, 21 is an algebraic field. Thus the rational 
algebra is a natural extension of the algebraic field. 

While the term algebraic integer is well defined, integral num­
ber of a rational algebra is not. The concept of domain of 
integrity is capable of generalization, however. An algebra 21 
may possess several such domains of integrity. 

The most satisfactory definition for domain of integrity has 
been given by Dickson* by means of the five postulates: 

R: For every element of the set, the coefficients of the rank 
equation are rational integers. 

C: The set is closed under addition, subtraction and multi­
plication. 

U: The set contains the modulus 1. 
M: The set is maximal. 
0: The set is of order n. 

It is proved that if 21 is not semi-simple,2 it can be written as a 
sum of a semi-simple algebra and a nilpotent algebra, and that 
the arithmetic of 21 is associated with that of the semi-simple 
component.1 We shall therefore devote attention only to semi-
simple algebras. 

For a domain of integrity © of a semi-simple rational al­
gebra 21, it is always possible to choose a basis eh e2, • • • , en so 
that €i = 1, every number of 2D is given by 

* See the bibliography on p. 853; the reference here is to No. 1 of that list. 
Hereafter, references will be by a small numeral corresponding to the number 
in the list. 
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where the a's are now rational integers, and such that the con­
stants of multiplication c^k are likewise rational integers. 

The general number satisfies an equation of minimum degree 
called the rank equation. The constant term of this equation is 
called the norm of the number. Numbers of norm 0 are called 
divisors of zero, those of norm ± 1 are called units. The norm of 
the product is equal to the product of the norms of the factors. 
Those numbers, neither divisors of zero nor units, which can be 
represented as a product of two numbers neither of which is a 
unit are called composite, and in the contrary case prime. Every 
composite number can be represented as a product of a finite 
number of primes, but not always uniquely. 

Due to the failure of the commutative law, the concept of 
greatest common divisor must be replaced by the concepts of 
greatest common right divisor (g.c.r.d.) and greatest common left 
divisor (g.c.l.d.). We shall say that S is a g.c.r.d. of a and /3 if 
there are numbers A, /x of 2) such that 

(1) a = XÔ, p = fid, 

and if also there are numbers p, a of 3) such that 

(2) ô = pa + <rp. 

It is immediately evident that every c.r.d. of a and /3 divides S. 
A similar definition holds for g.c.l.d. Of course two numbers a 
and ]3 do not have to possess either a g.c.r.d. or a g.c.l.d. 

3. Ideals. As a criterion for evaluating the various modifica­
tions of the Dedekind ideal theory which have been put forward 
in connection with the problem of unique factorization, we 
take the definition given by Dickson.3 This demands of an ideal 
system merely the following properties : 

(i) Each integer (not a divisor of zero) and its associates shall 
correspond to the same unique ideal. 

(ii) There shall be a subset of principal ideals which shall be 
isomorphic with the numbers of 35. 

(iii) The ideal corresponding to the units shall be the identity 
element of multiplication and shall have no factor different 
from itself. 

It will be interesting to see how far the ideal systems which 
have been advanced come from meeting these conditions. 
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Dedekind ideals, modified to fit non-commutative domains, 
may be defined as follows : A left ideal* is an infinite set of num­
bers of 2) which is closed under addition and subtraction, and 
closed under multiplication on the left by the numbers of 35. If 
not every number of the ideal is a divisor of zero, the ideal is 
called non-singular. 

The set of numbers 

£i«i + £20:2 + • • • + ihothi 

where the au • • • , ak are fixed and the £1, • • • , £& variable 
numbers of 35, obviously constitutes a left ideal (au • • -, «&]. 
In fact, there are no others. If £ = 1, the ideal is principal, 
written a = (a]. 

Tha t Dedekind ideals are fundamentally connected with the 
problem of the g.c.d. is evident from the fact that a necessary 
and sufficient condition that a and j8 have a g.c.r.d. is that the left 
ideal (a, /?] be principal. For if (a, /3] is principal, there exists a 
number S such that the sets 

£5, 7]a + f0, (£, y, f variable) , 

are equal. Thus in particular for rj = 1, £* = 0 there is a number £1 
such that ce = £iS, and for ^ = 0, f = 1 there is a number £2 such 
that j8 =£28. Furthermore, for £ = 1 there are numbers rjh f 1 such 
that ô = 77ice + fij8. Thus S is a g.c.r.d. of a and /3. The converse is 
evident, for by (2) every number £ô is a linear combination of 
a and /3, and by (1) every linear combination of a and /3 is a 
multiple of S. 

I t is easily proved that every ideal has a basis coi, co2, • • • , ww 

such that the numbers of the ideal are given by the linear com­
binations of these basis numbers with rational integral coef­
ficients. An ideal is non-singular if any one of the following 
properties holds: 

(a) The numbers coi, w2, • • • , wn are linearly independent. 
(b) The ideal contains rational integers. 
(c) Not every element is a divisor of zero. 
(d) The norm \grs \ is not zero, where o)i-=X)^*J€/« 

* Probably it would have been more logical to have reversed the definitions 
of left and right ideals as was done by Hurwitz4 for quaternions, for the es­
sential property of (a] is not that it is closed under multiplication on the left, 
but that a is a right divisor of every number in it. 
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4. The Early Literature. In first introducing ideals Kummer 
was interested only in establishing the unique factorization law 
in certain algebraic fields. The existence of the g.c.d. together 
with the commutative law implies unique factorization. Without 
the commutative law it does not, as was shown by Hurwitz4 

in what seems to be the earliest use of ideals in a non-commu­
tative algebra. Unique factorization does not hold for all integral 
quaternions, yet every quaternion ideal is principal, and every 
pair of integral quaternions has a g.c.r.d. and a g.c.l.d. unique 
up to unit factors. 

From this example it is evident that too much is not to be 
expected from the ideal theory in the non-commutative case. 
In the generalization from algebraic fields to rational algebras, 
the problem of the greatest common divisor and the problem of 
unique factorization follow divergent paths, and the Dedekind 
ideal theory is fundamentally connected with the former prob­
lem. 

Beginning about 1906, L. G. du Pasquier5 wrote a series of pa­
pers investigating domains of integrity in rational algebras. 
He did not use Wedderburn's theory of linear algebras, how­
ever, and his work consisted principally of investigations of 
particular algebras. He recognized the advisability of working 
in maximal domains of integrity, and knew that maximal do­
mains according to his definition of domain do not exist in all 
algebras. We now know that his difficulties were encountered 
with algebras which were not semi-simple. His conjecture that 
the ideal theory is helpless to introduce unique factorization 
into domains which are not maximal was definitely proved by 
Dickson.3 

Probably the most important of the algebras considered in 
detail by du Pasquier6 is the complete matric algebra over the 
rational field. He called a matrix integral if all its elements were 
rational integers. He developed a euclidean algorithm for such 
matrices and proved that a set of integral matrices M\, ikf2, • • • , 
Mk, not all singular, possess a g.c.r.d. unique up to a left factor A 
which is integral and of determinant ± 1. Conversely, if D is a 
g.c.r.d., so is AD for every unimodular integral matrix A. 
Similar results hold for the g.c.l.d. 

Du Pasquier defined right and left ideals for this algebra 
and showed that in virtue of the existence of the euclidean algo-
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rithm every ideal not composed exclusively of divisors of zero 
is principal. He also discussed two-sided ideals and found that 
they are never singular. 

5. Speiser's Theory. The first paper dealing exclusively with 
ideals in domains of linear algebras was written by Andreas 
Speiser7 in 1926. The first part of the paper is devoted to ideals 
in commutative domains, that is, rings. In a maximal domain 
of integrity the ideal product is defined in the usual way as the 
totality of sums of products consisting of a number of the first 
ideal by a number of the second. Unique factorization into prime 
ideals holds. For the commutative case Speiser's results are 
interesting and very satisfactory. 

For non-commutative domains of integrity, however, Speiser 
does not seem to have been so successful. A one-sided ideal, 
defined in the usual way, is determined by its residue classes, 
which in turn are represented by matrices with elements in a 
Galois field. The intersection of two ideals is called their least 
common multiple (l.c.m.). The ideal formed by adding every 
number of the first to every number of the second is called their 
g.c.d. If the g.c.d. of two ideals is the unit ideal, they are rela­
tively prime, and their product is defined to be their l.c.m. 
Thus multiplication of prime ideals is commutative in a non-
commutative domain of integrity. Dickson's second require­
ment (ii) for an ideal is violated. 

If the norm of a right ideal [b) is piaip2
a2 • • • piai, then [b) can 

be written as [qi) [q2) • • • [q*)> where the factors are prime in 
pairs (so that their product is defined as above) and each is a 
divisor of a power of a two-sided prime ideal which divides the 
norm. The factors are commutative and define [b) uniquely. 

The factorization of each [q) is treated somewhat after the 
manner of the series of composition of a finite group. Suppose 
that [q) is an ideal divisor of pa, where p is a natural prime. By 
adjoining p to [q) there results an ideal divisor [^i) of p. The 
quotient of [q) by [$i) is obtained by taking those residue 
classes in [q) which are divisible by p and dividing them by p. 
This new ideal is called [qi). Now adjoin p to [qi) and obtain 
[^2) which is similarly a divisor of [$1). This process ends in a 
steps, and then by definition 

[q)= [$0 [$«) • • • PP.). 
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Each factor is a divisor of the same two-sided prime ideal, and 
each divides the preceding. The factors are uniquely determined, 
but the product is not in general uniquely determined by the factors. 
Ideal multiplication is not uniquely defined. 

Speiser regrets that a number of the most interesting concepts 
of algebraic number theory do not carry over. He mentions in 
particular the failure of the theorem that the ideal product can 
be defined through the products of the basis numbers. He also 
remarks upon the lack of a definition of ideal class, and the 
consequent vacuousness of the theorem that the class number is 
finite. He admits the belief that these concepts and theorems 
are essentially restricted to the algebraic number theory. 

6. KrulVs Theory. In a recent paper Zur Theorie der zwei-
seitigen Ideale in nichtkommutativen Bereichen,8 the ideal theory 
is treated from a postulational point of view. The essential 
difficulty of a definition of ideal product is avoided by laying 
down a set of postulates which ideal multiplication is to obey. 

This paper of Krull seems to touch only slightly upon ideals 
in rational algebras, so we shall not discuss it in detail. The 
concept of halbkommutativ is introduced for those domains in 
which every pair of prime ideals are commutative. The two-
sided ideals are not isomorphic with the integral numbers, and 
the result which he emphasizes is that the ideals are not as a 
rule either commutative or halbkommutativ. 

7. Present Status of the Unique Factorization Problem. This 
year Miss Grace Shover9 in collaboration with the writer ad­
vanced a theory of ideal multiplication using integral matrices. 
Ideal multiplication is defined through the product of its basis 
numbers, but as Speiser noted, this definition is not as fruitful 
as one could wish. The norm of the product is not always equal 
to the product of the norms, and consequently Dickson's second 
requirement is not always complied with. 

The conclusion seems to be that all attempts up to the 
present to apply Dedekind ideals to the problem of unique 
factorization in a non-commutative domain of integrity have 
been wrecked because of the lack of a satisfactory definition of 
ideal multiplication. Perhaps one is justified in hazarding the 
opinion that the theory will not extend. 

8. The Matric Theory. In 1929 the writer10 attempted to see 
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how far the ideal theory would extend without the use of ideal 
multiplication. It was surprising that so much of the ideal 
theory as regards the greatest common divisor carried over in­
tact. The right and left class numbers were satisfactorily de­
fined, and Miss Shover11 has just proved them finite and equal. 
A necessary and sufficient condition that every pair of numbers 
of 2) possess a g.c.r.d. unique up to a unit left factor is that the 
class number of 35 be 1. In this case they also possess a g.c.l.d. 
unique up to a unit right factor. Moreover, a method for finding 
these greatest common divisors will be developed in §9. 

The use of integral matrices in the theory of ideals in an 
algebraic field was not entirely new, but it had not been 
thoroughly exploited. Of course a correspondence between ideals 
and quadratic forms was known to Dedekind. Poincaré12 used 
the matrix (grs) to represent the ideal with basis w»=]Clto€* but 
he did nothing with the matrix except to consider it as an aggre­
gate of n2 numbers. 

Another result of Poincaré13 was of more significance. He 
showed essentially that every associative algebra is isomorphic 
with a matric algebra, and it is but a step to see that when the 
basis numbers of the algebra form a basis for the domain of 
integrity 2), the elements of every matrix corresponding to an 
integral number are rational integers, and conversely. Whether 
Poincaré knew that this correspondence could be extended to 
ideals is problematical.14 His statements on this point have 
justly been termed "obscure."* 

A correspondence between ideals and integral matrices dif­
ferent from that of Poincaré was set up by A. Chatelet.15 Let 
an algebraic number 6 satisfy an irreducible equation whose 
roots are Xi, X2, • • • , Xw. Denote the diagonal matrix (Srs\) by 
\\i]. There exists a matrix T = A [X;]^4-1 with rational integral 
elements if and only if the first column of A apart from a 
constant factor constitutes a basis for an ideal, the other columns 
of A being the conjugates of the first. By keeping A fixed and 
letting 0 vary over the numbers of 3), matrices corresponding 
to all numbers of the ideal are obtained. If A corresponds to the 
unit ideal, the corresponding T's represent the numbers of 

* National Research Council, Bulletin on Algebraic Numbers, I, p. 26, 
footnote 4. 
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3)(0), a n d the representation is an isomorphism with respect to 
addition and multiplication. 

Let D be a g.c.d. of the matrices representing the n numbers 
whose ideal g.c.d. we seek. Then DA has as its first column this 
base. Chatelet calls D an ideal factor. In a brief account in the 
Comptes Rendus16 he states that "to the divisibility of ideals 
corresponds naturally the divisibility of ideal factors." Upon 
consulting a book17 published by him in the following year it 
appears that his investigations had not been carried as far as 
one might be inclined to suppose from a reading of the former 
article. He does, however, give a method for calculating the 
product of two ideals. 

9. The Problem of the Greatest Common Divisor. Since matrices 
are in general non-commutative, the matric theory seemed a 
natural tool to apply to ideals in non-commutative domains of 
integrity. Suppose we have a domain of the type described in §2 
with basis ei, e2, • • • , en. To the number 

£ = tfl€i + X2€2 + * * * + Xn€n, 

we make correspond its first matrix 

•#(£> = ( 2*tffrr)-

The first matrices give a matric representation of the algebra. 
So do the second matrices 

This is the correspondence of Poincaré.13 

Let j be a left ideal with basis coi, co2, • • • , co„, where 

The matrix G = (grs) is said to correspond to the ideal. The 
matrices AG, where A is integral and unimodular, give all 
matrices corresponding to the same ideal. 

The fundamental theorem10 is that a necessary and sufficient 
condition that a matrix G correspond to an ideal is that there 
exist n integral matrices Di, Z)2, • • • , Dn such that 

(3) GRJ = D%G, (i = 1, 2, • • • , n)% 

where R? denotes the transpose of jR(e*). Thus if G is non-
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singular it transforms the transposed first matrix of every num­
ber of 35 into an integral matrix. 

I t so happens that under this definition of correspondence 
the second matrix S(£) corresponds to the principal left ideal 
(£]. Then (3) becomes 

smT(v) = RT(v)sm, 
that is, the second matrices of every given number £ are com­
mutative with the transposed first matrices of every number 
rj of 35. The converse is also true, namely, that every integral 
matrix commutative with every RT(rj) is the second matrix of 
some number of 3). 

The concept of equivalence of ideals is introduced in a manner 
analogous to that in algebraic number theory. If «i, co2, • • • , <on 

constitute a basis for an ideal f, and if $ is a number of 3), then 
«is, co2s, • • • , uns is a basis for an ideal which we denote by ts. 
This is essentially a definition of scalar multiplication for ideals. 
If fi and f2 are two non-singular ideals, they are called equiva­
lent if there exist numbers si and s2 of 35 such that ïiSi = ï2s2. I t 
is shown that if Gi corresponds to ïi and G2 to ï2, a necessary 
and sufficient condition that ïi and t2 be equivalent is that the 
matrices Du, D2i defined by 

GiRi = Dud, G2Rj = D2iG2, 

be connected by a relation 

Du = AD2iA~\ (i = 1, 2, • • • , n), 

where A is integral and unimodular. 
The (left) class number h is defined as the number of non-

equivalent non-singular ideals in 35. A necessary and sufficient 
condition that every pair of numbers in 35 possess a g.c.r.d. 
unique up to a unit left factor is that this class number be 1. 
The left and right class numbers are finite and equal.11 

One of the interesting by-products of the theory is the proof 
that every ideal class possesses a basis composed of n integral 
matrices Bu B2, • • • , Bn such that every matrix corresponding 
to an ideal of the class is of the form AG, where A is integral 
and unimodular and G is of the form 

hiBx+ h2B2+ • • • + hnBn) 
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where the h's are rational integers. If the class is non-singular, 
that is, contains at least one non-singular ideal, the B's are 
linearly independent. Every ideal of the class is given by this 
form not once but exactly p times, where p is the (cardinal) 
number of units in 35. 

It is also of interest that the matric theory is able to provide 
for all domains of integrity 3D of semi-simple rational algebras an 
effective euclidean algorithm, something which has been de­
veloped previously for only a few algebraic fields. Let a and j8 
be two numbers of £) not divisors of zero. Let P be a matric 
g.c.r.d. of S(a) and S(j3). Then P corresponds* to a basis of the 
ideal (a, ]3] composed of the numbers %a + r}P, and consequently 
the matrices 

PRJP-I = Ti} ( i = 1,2, . - , » ) , 

are all integral. 
Now (ce, j3] is principal if and only if there exists a uni-

modular integral matrix A such that AP = S(8), where S is a 
g.c.r.d. of a and /3. Since every second matrix is commutative 
with Rj, we can find whether A exists, and determine it if it 
does exist, from the relations APRj = Rj AP, which are equiva­
lent to 

RJA =ATi9 (f = 1, 2, • • • ,n). 

By determining AA (adjoint of A) we determine A. But 

(4) AARJ = 7VLA, (f = 1,2, . • • , » ) , 

so the matrices AA constitute a minor class of ideal matrices.10 

This class has a basis B\, B2, • • • , Bn such that every matrix 
satisfying (4) is of the form 

#lJ3i + X2B2 + • • • + %nBn-

Hence the nz equations resulting from (4) are in fact equivalent 
to but n(n—\) equations in n parameters provided the matrix 
AA exists. The condition AA — ± 1 leads to the generalized Pell 
equation 

| %iBi + x2B2 + • • • + xnBn | == ± 1, 

* Proved by the writer for algebraic fields but readily extensible to do­
mains of integrity £).18 
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the solution of which is the same type of problem as the de­
termination of the units of 5). This was to have been expected, 
since S is unique only up to a unit factor. Every determination 
of A leads to a determination of ô. 

Since 

AP = XiSi + X2S2 + * ' * + %nSn, 

the x's are readily found by the method of undetermined coef­
ficients. By the same method we can find the numbers X, JU of 
£) such that ô=Xa+M|3. 

I hope to convince you of the practicability of this generalized 
euclidean algorithm in a future paper. 

10. Conclusion. In some respects the attempts to extend the 
ideal theory to non-commutative domains of integrity have 
failed, for the unique factorization problem has not been solved. 
On the other hand, much light has been thrown on the structure 
of systems of ideals, and on the relationship between the unique 
factorization problem and the problem of the greatest common 
divisor. 

Then, too, the at tempts to solve this problem have led to the 
use of new instruments in the ideal theory, and these in turn 
have led to the discovery of new results in algebraic number 
theory—the basis of an ideal class, the generalized euclidean 
algorithm, and direct methods for multiplying ideals9 and for 
finding the canonical basis of an ideal.18 A new connection be­
tween integral matrices and ideals, in no way dependent upon 
the preceding results, is the following theorem of C. G. Latimer.19 

If p(x) = 0 is the irreducible equation defining the integral num­
ber 0, the class number of §(0) is the number of dissimilar in­
tegral matrices satisfying p(x) = 0. 

In closing, I rather timidly put forward the suggestion that 
perhaps the unique factorization problem has been solved for 
some time and that this fact has not been properly appreciated. 
We have been so intent on generalizing Dedekind ideals that 
we have refused to consider other possible solutions. Let us 
consider the domain of integrity £)' composed of all integral 
matrices of order n. This domain of integrity contains a sub-
domain, consisting of the second matrices of the numbers of 5D, 
which is isomorphic with 3) not only under multiplication but 
under addition as well. All of the units of 35 are contained among 
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the units of £)', all the divisors of zero of © are contained among 
the divisors of zero of $)', The class number of Î ) ' is 1, and every 
number of SD' can be expressed as a product of prime matrices6 

in one and only one way apart from unit factors. Is there any 
reason for pursuing this problem further? 
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