[December,

A NOTE ON PRIMITIVE IDEMPOTENT ELE-MENTS OF A TOTAL MATRIC ALGEBRA*

BY F. S. NOWLAN

We consider a total matric algebra M over a field F, whose general element is

$$u = \sum \alpha_{ij} e_{ij}, \qquad (i, j = 1, \cdots, n),$$

where $e_{ij}e_{lk} = e_{ik}$ if j = l, and $e_{ij}e_{lk} = 0$ for $j \neq l$.

THEOREM 1. A necessary and sufficient condition that $u = \sum \alpha_{ij} e_{ij}$ be idempotent in M is

(1)
$$\sum_{s} \alpha_{ps} \alpha_{sq} = \alpha_{pq}, \qquad (p, q = 1, \cdots, n).$$

This is seen immediately on writing

$$u^2 = \sum_{p, q, s} \alpha_{ps} \alpha_{sq} e_{pq}$$

and comparing with

$$u = \sum_{p,q} \alpha_{pq} e_{pq}.$$

THEOREM 2. A necessary and sufficient condition for an idempotent element u to be primitive in M is

(2)
$$\alpha_{pi}\alpha_{jq} = \alpha_{pq}\alpha_{ji}, \qquad (p, q, i, j = 1, \cdots, n).$$

For, let

$$u = \sum_{r,t} \alpha_{rt} e_{rt}$$

be a primitive indempotent element of M. Let $\alpha_{ji} \neq 0$. Then the element $ue_{ij}u/\alpha_{ji}$ is idempotent in uMu, since

$$\left(\frac{ue_{ij}u}{\alpha_{ji}}\right)^2 = \frac{u \cdot e_{ij}ue_{ij} \cdot u}{\alpha_{ji}^2} = \frac{u\alpha_{ji}e_{ij}u}{\alpha_{ji}^2} = \frac{ue_{ij}u}{\alpha_{ji}} \cdot$$

Hence[†] we have $ue_{ij}u/\alpha_{ji} = u$, and $ue_{ij}u = \alpha_{ji}u$. Equating coef-

^{*} Presented to the Society, June 15, 1927.

[†] Dickson, Algebras and their Arithmetics, p. 55.

ficients of e_{pq} , we have $\alpha_{pi}\alpha_{jq} = \alpha_{pq}\alpha_{ji}$. Conversely, suppose that $u = \sum \alpha_{rt} e_{rt}$

is idempotent in M and let

 $\alpha_{pi}\alpha_{jq} = \alpha_{pq}\alpha_{ji}, \qquad (p, q, i, j = 1, \cdots, n).$ It follows that u is a primitive idempotent. In proof, let

$$m = \sum \beta_{sp} e_{sp}$$

be any element of M. Then

$$umu = \sum_{r,s,p,t} \alpha_{rs} \beta_{sp} \alpha_{pt} e_{rt} = \sum_{r,s,p,t} \alpha_{ps} \beta_{sp} \cdot \alpha_{rt} e_{rt}.$$

The coefficient of $\alpha_{rt}e_{rt}$ is

$$\sum_{s,p} \alpha_{ps} \beta_{sp}$$

which is independent of r and t. It follows that

$$umu = \left(\sum_{s,p} \alpha_{ps} \beta_{sp}\right) \left(\sum_{r,t} \alpha_{rt} e_{rt}\right) = \sum_{s,p} \alpha_{ps} \beta_{sp} \cdot u.$$

This shows that the algebra uMu is of order 1, based on its modulus.^{*} Hence u is a primitive idempotent element of M.

Applying (2) to (1), we obtain the following corollary.

COROLLARY. Relations (2) and (3) below constitute necessary and sufficient conditions for u to be a primitive idempotent element of M:

(2)
(3)
$$\alpha_{pi}\alpha_{jq} = \alpha_{pq}\alpha_{ji} \\ \sum \alpha_{pp} = 1$$
, $(p, q, i, j = 1, \cdots, n)$.

The above Corollary leads to a simple device for obtaining the coordinates of a primitive idempotent element of a total matric algebra of order n. Construct a square array of n rows and n columns, as follows.

First write numbers, $\alpha_{ii}(i=1, \dots, n)$ along the principal diagonal so that $\sum \alpha_{ii} = 1$. Then write in numbers α_{i1} arbitrarily in the first column. Next write in numbers α_{ij} chosen to satisfy the relation $\alpha_{i1}\alpha_{jj} = \alpha_{ij}\alpha_{j1}$, $(i=1, \dots, n; j=2, \dots, n)$. It follows readily that $\alpha_{ij}\alpha_{km} = \alpha_{im}\alpha_{kj}$, $(i, j, k, m = 1, \dots, n)$.

We illustrate with the array

1931.]

^{*} Nowlan, On the direct product of a division and a total matric algebra, this Bulletin, vol. 36 (1939), p. 267, Theorem 5.

for the case n = 3. This gives the primitive idempotent element

$$u = \frac{1}{3}e_{11} + e_{12} + \frac{2}{9}e_{21} + \frac{2}{3}e_{22} - 2e_{31} - 6e_{32}.$$

We define supplementary primitive idempotent elements as follows.

DEFINITION. A set of primitive idempotent elements is said to be *supplementary* in case their sum equals the modulus and if, further, the product of each pair in either order is zero.*

We now determine necessary and sufficient conditions that a set of primitive idempotent elements shall be supplementary.

Let u_i and $u_i(i \neq j)$ be two of a set of supplementary primitive idempotent elements. A necessary and sufficient condition for the relation $u_iu_j = u_ju_i = 0$, is obviously

$$\sum_{s} \alpha_{rs}^{(i)} \alpha_{st}^{(j)} = 0,$$

where $\alpha_{rs}^{(i)}$ and $\alpha_{st}^{(j)}$ are the general coordinates of u_i and u_j respectively. Combining this result with the condition that the sum of the components of a set of supplementary primitive elements shall equal the modulus, we have the following result.

THEOREM 3. Equations (4), (5) and (6), which follow, constitute necessary and sufficient conditions that a set of primitive idempotent elements shall be supplementary:

(4)
$$\sum_{s} \alpha_{rs}^{(i)} \alpha_{st}^{(j)} = 0, \quad (i \neq j \text{ and } r, s, t, i, j = 1, \cdots, n);$$

(5)
$$\sum_{k=1}^{n} \alpha_{rl}^{(k)} = 0,$$
 $(r \neq l \text{ and } r, l = 1, \cdots, n);$

(6)
$$\sum_{k=1}^{n} \alpha_{rr}^{(k)} = 1,$$
 $(r = 1, \dots, n).$

THE UNIVERSITY OF BRITISH COLUMBIA

^{*} A supplementary set of primitive idempotent elements of a total matric algebra of order n^2 contains exactly *n* elements. See F.S. Nowlan, this Bulletin, vol. 36 (1930), p. 268.