A NOTE ON PRIMITIVE IDEMPOTENT ELEMENTS OF A TOTAL MATRIC ALGEBRA*
 BY F. S. NOWLAN

We consider a total matric algebra M over a field F, whose general element is

$$
u=\sum \alpha_{i j} e_{i j}, \quad(i, j=1, \cdots, n)
$$

where $e_{i j} e_{l k}=e_{i k}$ if $j=l$, and $e_{i j} e_{l k}=0$ for $j \neq l$.
Theorem 1. A necessary and sufficient condition that $u=\Sigma \alpha_{i j} e_{i j}$ be idempotent in M is

$$
\begin{equation*}
\sum_{s} \alpha_{p s} \alpha_{s q}=\alpha_{p q}, \quad(p, q=1, \cdots, n) \tag{1}
\end{equation*}
$$

This is seen immediately on writing

$$
u^{2}=\sum_{p, q, s} \alpha_{p s} \alpha_{s q} e_{p q}
$$

and comparing with

$$
u=\sum_{p, q} \alpha_{p q} e_{p q}
$$

Theorem 2. A necessary and sufficient condition for an idempotent element u to be primitive in M is

$$
\begin{equation*}
\alpha_{p i} \alpha_{j q}=\alpha_{p q} \alpha_{j i}, \quad(p, q, i, j=1, \cdots, n) \tag{2}
\end{equation*}
$$

For, let

$$
u=\sum_{r, t} \alpha_{r t} e_{r t}
$$

be a primitive indempotent element of M. Let $\alpha_{j i} \neq 0$. Then the element $u e_{i j} u / \alpha_{j i}$ is idempotent in $u M u$, since

$$
\left(\frac{u e_{i j} u}{\alpha_{j i}}\right)^{2}=\frac{u \cdot e_{i j} u e_{i j} \cdot u}{\alpha_{j i}^{2}}=\frac{u \alpha_{j i} e_{i j} u}{\alpha_{j i}^{2}}=\frac{u e_{i j} u}{\alpha_{j i}} .
$$

Hence \dagger we have $u e_{i j} u / \alpha_{j i}=u$, and $u e_{i j} u=\alpha_{j i} u$. Equating coef-

[^0]ficients of $e_{p q}$, we have $\alpha_{p i} \alpha_{j q}=\alpha_{p q} \alpha_{j i}$. Conversely, suppose that
$$
u=\sum \alpha_{r t} e_{r t}
$$
is idempotent in M and let
$$
\alpha_{p i} \alpha_{j q}=\alpha_{p q} \alpha_{j i}, \quad(p, q, i, j=1, \cdots, n)
$$

It follows that u is a primitive idempotent. In proof, let

$$
m=\sum \beta_{s p} e_{s p}
$$

be any element of M. Then

$$
u m u=\sum_{r, s, p, t} \alpha_{r s} \beta_{s p} \alpha_{p t} e_{r t}=\sum_{r, s, p, t} \alpha_{p s} \beta_{s p} \cdot \alpha_{r t} e_{r t} .
$$

The coefficient of $\alpha_{r t} e_{r t}$ is

$$
\sum_{s, p} \alpha_{p s} \beta_{s p}
$$

which is independent of r and t. It follows that

$$
u m u=\left(\sum_{s, p} \alpha_{p s} \beta_{s p}\right)\left(\sum_{r, t} \alpha_{r t} e_{r t}\right)=\sum_{s, p} \alpha_{p s} \beta_{s p} \cdot u .
$$

This shows that the algebra $u M u$ is of order 1 , based on its modulus.* Hence u is a primitive idempotent element of M.

Applying (2) to (1), we obtain the following corollary.
Corollary. Relations (2) and (3) below constitute necessary and sufficient conditions for u to be a primitive idempotent element of M :

$$
\left.\begin{array}{l}
\alpha_{p i} \alpha_{j q}=\alpha_{p q} \alpha_{j i} \tag{2}\\
\sum \alpha_{p p}=1
\end{array}\right\}, \quad(p, q, i, j=1, \cdots, n)
$$

The above Corollary leads to a simple device for obtaining the coordinates of a primitive idempotent element of a total matric algebra of order n. Construct a square array of n rows and n columns, as follows.

First write numbers, $\alpha_{i i}(i=1, \cdots, n)$ along the principal diagonal so that $\Sigma \alpha_{i i}=1$. Then write in numbers $\alpha_{i 1}$ arbitrarily in the first column. Next write in numbers $\alpha_{i j}$ chosen to satisfy the relation $\alpha_{i 1} \alpha_{j j}=\alpha_{i j} \alpha_{j 1},(i=1, \cdots, n ; j=2, \cdots, n)$. It follows readily that $\alpha_{i j} \alpha_{k m}=\alpha_{i m} \alpha_{k j},(i, j, k, m=1, \cdots, n)$.

We illustrate with the array

[^1]\[

\left($$
\begin{array}{rrr}
\frac{1}{3} & 1 & 0 \\
\frac{2}{9} & \frac{2}{3} & 0 \\
-2 & -6 & 0
\end{array}
$$\right)
\]

for the case $n=3$. This gives the primitive idempotent element

$$
u=\frac{1}{3} e_{11}+e_{12}+\frac{2}{9} e_{21}+\frac{2}{3} e_{22}-2 e_{31}-6 e_{32} .
$$

We define supplementary primitive idempotent elements as follows.

Definition. A set of primitive idempotent elements is said to be supplementary in case their sum equals the modulus and if, further, the product of each pair in either order is zero.*

We now determine necessary and sufficient conditions that a set of primitive idempotent elements shall be supplementary.

Let u_{i} and $u_{j}(i \neq j)$ be two of a set of supplementary primitive idempotent elements. A necessary and sufficient condition for the relation $u_{i} u_{j}=u_{j} u_{i}=0$, is obviously

$$
\sum_{s} \alpha_{r s}^{(i)} \alpha_{s t}^{(j)}=0
$$

where $\alpha_{r s}^{(i)}$ and $\alpha_{s t}^{(j)}$ are the general coordinates of u_{i} and u_{j} respectively. Combining this result with the condition that the sum of the components of a set of supplementary primitive elements shall equal the modulus, we have the following result.

Theorem 3. Equations (4), (5) and (6), which follow, constitute necessary and sufficient conditions that a set of primitive idempotent elements shall be supplementary:

$$
\begin{array}{lr}
\sum_{s} \alpha_{r s}^{(i)} \alpha_{s t}^{(j)}=0, & (i \neq j \text { and } r, s, t, i, j=1, \cdots, n) ; \\
\sum_{k=1}^{n} \alpha_{r l}^{(k)}=0, & (r \neq l \text { and } r, l=1, \cdots, n) ; \\
\sum_{k=1}^{n} \alpha_{r r}^{(k)}=1, & (r=1, \cdots, n) . \tag{6}
\end{array}
$$

The University of British Columbia

[^2]
[^0]: * Presented to the Society, June 15, 1927.
 \dagger Dickson, Algebras and their Arithmetics, p. 55.

[^1]: * Nowlan, On the direct product of a division and a total matric algebra, this Bulletin, vol. 36 (1939), p. 267, Theorem 5.

[^2]: * A supplementary set of primitive idempotent elements of a total matric algebra of order n^{2} contains exactly n elements. See F.S. Nowlan, this Bulletin, vol. 36 (1930), p. 268.

