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ON THE APPLICATION OF A THETA FORMULA TO
REPRESENTATION IN BINARY
QUADRATIC FORMS*

BY GORDON PALL}

In his remarkable 1885 dissertation,i Applications of the
Theory of Elliptic Functions to the Theory of Numbers, Nazimoff
uses the formula (1) to derive the number of representations in
x243y? and x2+4-5y% Some of his theorems are not quite correct.
He does not derive the series representing »_» ¢#+7# since “the
derivation is long and not difficult.” He states that the method
has only limited application, since generally in (4) the 4’s are
functions of %.

It is the purpose of this paper to give the essential details for
x247y?, and to prove that the only cases ax2+by?, ab odd, which
are actually solvable by Nazimoff’s method are a=1, b=1, 3,
5, 7. The final result for x2+7y2 is of course far from new.

At the time this paper was written the writer intended to
examine the products of series involved in other cases than
a=1, b=1, 3, 5, 7, in the hope of obtaining information on
N(n=x%+11y2) or other cases of several classes in a genus. But
since then an arithmetic method has been discovered of finding
a simple formula for the number of representations in any posi-
tive, binary quadratic form. It is possible, after the details of
this theory have been worked out, that there may be applica-
tions to elliptic and modular functions.

The formula which Nazimoff uses is

¢y 2.q°= " = (ab)~11%¢(2K/(ab)),

where x, ¥ run through all integers, a and b are given positive,
odd, relative-prime integers, and

(a—1)/2 (b—1)/2

2
) () = — I tGbuy TI #(haw).
=1 h=1

™

* Presented to the Society at Pasadena, November 28, 1931.
t National Research Fellow, California Institute of Technology.
1 Translation by Arnold E. Ross, pp. 5-12.
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Here {(«) is an abbreviation for the elliptic function

snudnu  9i(x)ds(x)
cn % a t’2(90)04(9(’)’

Thus N(n=ax2+0by?) is the coefficient of ¢” in the expansion
in powers of g of the value for x =1/(ab) of the elliptic function
(ab)~'2¢(u). We shall see in a moment that the latter, with
t(u), has the periods # =2K and 2:K’, and, in many cases, only
simple poles. When this is so we can express ¢(#) as a sum of
simple theta-quotients with coefficients independent of u. For
example,

@ o(u) = EA{:;I ((xx - 3 + ’;E:))}

(3) (u = 2Kz).

the summation being extended to a representative set of poles
x=q, and the coefficients 4 being the residues at these poles.
When all the 4's are absolute constants, independent of k, our
problem can be solved, since we have the formula

& (x o
£ (@) =ctn1rx+4z
H1(x) =1 1 — g%

27

©)

sin 27r,

with which to form a comparison power series in g.
We use the notations of Tannery and Molk, whence

(6) u=2Kzx, 1= 1iK'/K, ¢ = exp wir.
Hence t(hau), ¢(lbu) have the periods x =1, 7, and ¢(«) also has

these periods. The poles of {(kau) are the zeros of the denomi-
nator ¢#s(hax)d4(hax), namely

1
@) x = —Z—a—}—l(ml + mar),

where m,, m. are any integers of opposite parities; the zeros of
t(hau) are given by (7) with mi=m, (mod 2). These poles and
zeros are simple. Hence, if p is a positive integer, the number o
such that

8) a= (ml + m27)/(2P), (m'l: M, P) =1, m # e (mod 2))

is a zero or pole of ¢(kau) if and only if p Iha, and is the former
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or the latter according as ha/p is even or odd. The number of
multiples of p in the sequence

a, 2(1, te 7%(17 - 1)0:

with an odd quotient for p cannot exceed the number with an
even quotient by more than unity. Hence each product IT in
(2) has only simple poles. If they have poles in common, ¢(«)
has a double pole. This occurs, for example, with p=1ifa=b=3
(mod 4). For no pole « is ¢1(a) =0.

The poles of ¢(2Kx) in the parallelogram P=(0, 1, 7, 1+7)
are easily found by the preceding method. If a =1, b=7 they
are seen at once to be p+o7 and o+p7, where

9) (pyo) = (3,0), (3,0, 3,E 0, D, 3 0,E 1, G,
3,3 39,¢0,ED &P
Let us calculate the residue A of ¢(2Kx) at a simple pole

x=a of the form (8). If p divides ha with an odd quotient, the
limit as x—« of

(x — a) 2K -#t(ha-2Kx)
is readily seen to be (—1)™+1/(ha). If the quotient is even, the

limit as x—a of t(ha-2Kx)/((x—ca)2K) is simply ha. Write
B=2K«. By (4) and (5) and the preceding remarks, we find

A =lim7(x — a)¢(u) = lim 2K (« — )] [1¢(bw)[ [ 1 t(hau)
— QI ¢ 1 t(has),

where the primes indicate that the factors for which p |lb or
P [ha are omitted, and Q is the product of the proper numerical

factors (—1)™*Y/(ha), ha, (—1)™*/(la), la for these omitted
values % and [.

Now we readily verify that

(10)

(11) t(u 4+ 1KNt(u) =1 = — t(uw)i(u + K),
(12) tu + 25K’) = #(u) = t(u + 2K),
(13) 1GK) = 1, #(3iK") = i.

Hence, if p8=(2m+1)K+2niK’, m, n being integers,
(14) trB)(p — 1B) = 1 = — t(B)t(p + 7B),
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(15) 1(3pB) = (= D™

If pB=2mK+(2n41)iK’,

(16) W)y — 1B) = — 1 = — ¢(rB)i(p + 78),
(17) t(5pB) = (— Dri.

Hence in the products ]’ in (10), two factors the sum or dif-
ference of whose arguments is 8 multiplied by an odd integer
combine into a constant independent of %, and similarly for
single factors {(3psB), s odd.

Let a=1, b=9. Consider the pole a=1/(b—3), whence
p=%(0b—-3), mi=1, my=0. Except for a constant factor in-
dependent of %, the residue 4 is, by (14) and (15),

136 — 1)2Ka).

This actually depends on %, since it reduces to 1 if k=1, and to
tan (r/(b—3)) if k=0.

Letb>a>1,and considera=1/(2p), p=21(b—1)a.The second
factor I’ in (10) is independent of k as above, but I ;¢(1b8) is seen
to depend on &, since it has the value 1 if 2=1, and the value
I; tan (Ibn/((b—1)a)) #1if k=0.

Let a=1, b=3. Then ¢ =(2K/m)i(u). The poles in P are
given by p=1, mi=1or 0, me=0 or 1, and the residues 4 are
respectively —1 and +1 by the rule for forming Q.

Leta=1, b=S5. Then ¢ = 2K/x)t(1){(2u). Only p =2 defines
poles; and with it m; is 0 or 2, ms is 1 and 3, and vice-versa. By
(15) and (10) the residues A4 for m; odd are 3(—1)(™—/2 By (10)
and (17), 4 =43¢(—1)("=D/2 if m, is odd.

We can easily derive Nazimoff’s series for x2+43y? and x2-5y2.

Leta=1,b=7, ¢(u) =QK/m)t(u)t(2u)t(3u). If p=1, each I’
in (1) is trivially unity, and

4=Q= (= Dtz (= mHy3 = §

in all cases. If p=2, Q=(—1)m*/2, and #B)#36) =(—1)m*
by (14) and (16). Hence 4 =3 in all cases. If p=3,0 =(—1)=tV/3,
and ¢(8)¢(26) =(—1)™ by (14) and (16). Hence 4 = —1.

It follows that this method gives an immediate solution to
the problem of finding the formula for N(n=ax2+by?) only if
a=1,0=1,3,5,7.
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Write x=1/(ab), a=p-+or. On combining (4) and (5), we
have to calculate

(18) ZAa{sinZWna-l- sin2wn(x— a)} = (1—cos2mnx)s,+ (sin2wnx)c,,
: Sn = ZA,, sin 2rne, ¢, = ZAa cos 2mna,

where the summation is extended to the values & in P. Write
(19) t, = E,Aae2npi1rq2na',
where the prime indicates the omission of tlie values a=p+o7
for which ¢ =0. Then
(20) ZAa{ctn ra + ctn r(x — a)} =21 °‘szn(e—“’”'” —1)

a n=1

=0

+ D Adofctnra 4+ ctna(zx — )} .

Henceforth leta=1,b=7. The last sum in (20) is independent
of k£ and must be equal to 7'2 in view of (1). Since the denomi-
nators p of 2« are 1, 2, or 3 the calculation of s,, ¢,, {» may be

done conveniently modulo 6. For positive integers 7, we find
that

o = (— 1)7q5 4 @3 + ¢ — ¢ — g — ¢* — qOr,
¢S, tery = ¢ + {1 + (- 1)r}q6r—4 + ¢°rs,
lorg = — @31 4 g4r—2 4 g8t — qlor—5,
q3r—1 + {1 + (_ 1)r+1}q6r-—2 + q9r—3’ boro1 = qﬁr—-l.
And for any integer #,

o = 3tn + ta} + Vay

where 7, is the sum of the terms Ae?*?ir for ¢ =0, that is,

ter—s

tor—2

Yer = (— 1)7, ver—s = — 1, Yor—s = 1 4+ (= 1)7,
Yer—3 = O, Yer—e = 1 4+ (— 1), ygy = — 1.

Since ¢, is real for every %, and since
Sp = — %i(tn - t—n))

sn is purely imaginary. We may drop the imaginary parts, which
must annul each other. Hence
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2 2nw
224792 — T 2
(21) 72 ?_yq T = JUZ 4 2 Z_tn sin =3

. 2nm
Cn Sin — -
7

+4Z

n=11_q

Inserting the values of ¢,, ¢, calculated above, we find for the
right member of (21) the expression

6r——5 T
1 — —_—
7/2+421+ - 5sm(12r 10)7
67‘—1 T
+ 4 21 e - sin (127 — 2)7
37—2 __.1 r6r—4
+4Z< i >sin(12r-—8)—"—
1 — q3r-— 1 — ¢br— 7
(22) _ _
3r (_1)1‘+1 6r—2 T
+ 4 Z(l vl p—— >sm (12r — 4)—7-
4r—— —_— p2r—1
Layt T T sq sin (127 — 6)1;—
_1 6r 3r . p2r . 4r 12
+4Z( )¢+ ¢ — ¢ g, Lo
1 — ¢ 7

The coefficient of ¢ in (22) may be calculated as follows.
Write f(m) =2 sin (2mw/7). Form all factorizations n=ds of n
into two positive factors and construct the following sums:

2f(@) (=1, 2 of(2d),

d=1,5 (mod 6) d=1,2 (mod 3)
/@) (=1, PINEHICIIS

d=0, 2,4 (mod 6) d=1(mod 2),d =1, 2 (mod 3)
2.6/(2d), 2[— 7GD)].
d = 0 (mod 3) d =0 (mod 2)
0 =1 (mod 2) 8 =1,2 (mod 3)

Hence we have

(23) TV2N(n = 22 4 Ty?) = 2( St Dt 4+ Ze>
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If n=m is prime to 6, this reduces to

(24) TUAN(m = a? + Ty?) = 2 2 [f(d) + f(2d) — J(3d)].

dlm

We now make use of a (Gauss sum) relation, which may be
proved if desired by comparing coefficients of a small power of
g in (21):

2dw 4drw 6dr 1/4d
(25) sin — 4+ sin — — sin— = —(—-)7”2.
7 7 7 2\7

Hence, if m is prime to 6,
(26) N(m = «2 + Ty%) = 2 > (d| 7).

Making use of (23) for one case we can easily establish by in-
duction the formula

(27) Nn=a2+7y) =2|a—1| 2@|7),

where n=2m, m odd, a=0.
The factor Ia——l l for a primary component 2¢ is character-
istic of a discriminant d=4D, D=1 (mod 8).
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