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ON T H E APPLICATION OF A T H E T A FORMULA TO 
R E P R E S E N T A T I O N IN BINARY 

QUADRATIC FORMS* 

BY GORDON PALL f 

In his remarkable 1885 dissertation,J Applications of the 
Theory of Elliptic Functions to the Theory of Numbers, Nazimoff 
uses the formula (1) to derive the number of representations in 
x2 + 3y2 and x2 + Sy2. Some of his theorems are not quite correct. 
He does not derive the series representing ^CX^*2"1"7^ since "the 
derivation is long and not difficult." He states that the method 
has only limited application, since generally in (4) the ^4's are 
functions of k. 

I t is the purpose of this paper to give the essential details for 
x2 + 7y2, and to prove that the only cases ax2 + by2, ab odd, which 
are actually solvable by NazimofFs method are a = l, & = 1, 3, 
5 ,7. The final result for x2 + 7y2 is of course far from new. 

At the time this paper was written the writer intended to 
examine the products of series involved in other cases than 
a = l, i = l, 3, 5, 7, in the hope of obtaining information on 
N(n=x2-\-lly2) or other cases of several classes in a genus. But 
since then an arithmetic method has been discovered of finding 
a simple formula for the number of representations in any posi
tive, binary quadratic form. It is possible, after the details of 
this theory have been worked out, that there may be applica
tions to elliptic and modular functions. 

The formula which Nazimoff uses is 

(1) 5 > « W = {ab)-^2<S>{2K/{ab)), 
x ,V 

where x, y run through all integers, a and b are given positive, 
odd, relative-prime integers, and 

2K (a~1>/2 (&-im 
(2) <t>{u) = J J t(lbu) I J Khau). 

* Presented to the Society at Pasadena, November 28, 1931. 
f National Research Fellow, California Inst i tute of Technology. 
t Translation by Arnold E. Ross, pp. 5-12. 



8 6 4 GORDON PALL [December, 

Here t(u) is an abbreviation for the elliptic function 

snudnu êi(x)ê3(x) 
(3) = ; (u = 2Kx). 

en u #2(#)*M#) 
Thus N(n=ax2 + by2) is the coefficient of qn in the expansion 

in powers of q of the value foi x = l/(ab) of the elliptic function 
(ab)~l,2cj>(u). We shall see in a moment that the latter, with 
t(u), has the periods u = 2K and 2iK\ and, in many cases, only 
simple poles. When this is so we can express <fi(u) as a sum of 
simple theta-quotients with coefficients independent of u. For 
example, 

(4) <f>(u) 

the summation being extended to a representative set of poles 
x=a, and the coefficients A being the residues at these poles. 
When all the A's are absolute constants, independent of k, our 
problem can be solved, since we have the formula 

tfi'O) A q2r 

(5) = ctn TX + 4 y, s m 2irrx, 
ûi(x) r = i 1 - q2r 

with which to form a comparison power series in q. 
We use the notations of Tannery and Molk, whence 

(6) u = 2Kx, T = iK'/K, q = exp7r£r. 

Hence t(hau), t(lbu) have the periods x = 1, r, and 0(^) also has 
these periods. The poles of t(hau) are the zeros of the denomi
nator &2(hax)&é(hax), namely 

(7) x = (mi + m2T)) 

2ah 

where mi, m2 are any integers of opposite parities; the zeros of 
t(hau) are given by (7) with mi = m2 (mod 2). These poles and 
zeros are simple. Hence, if p is a positive integer, the number a 
such that 

(8) a = (mi + m<2j)/(2p), (m\, m2) p) — 1, Wi ^ m2 (mod 2), 

is a zero or pole of t(hau) if and only if £ | t e , and is the former 



1931*3 APPLICATION OF A THETA FORMULA 865 

or the latter according as ha/p is even or odd. The number of 
multiples of p in the sequence 

a, 2a, • • • , J(J — l)a, 

with an odd quotient for p cannot exceed the number with an 
even quotient by more than unity. Hence each product II in 
(2) has only simple poles. If they have poles in common, (j>(u) 
has a double pole. This occurs, for example, with £ = l i f a = & = 3 
(mod 4). For no pole a is #i(o0 = 0 . 

The poles of <j>(2Kx) in the parallelogram P = (0, 1, r, 1 + r ) 
are easily found by the preceding method. If a = l, b = 7 they 
are seen at once to be p+ar and cr+pr, where 

(9) (P, <r) = (i , 0), (1, 0), ( | , | ) , ( | , 0), (f, | ) , (*, 0), ( i *), (£, f), 

(^- ïï)- (^- ïï)> (ë-- 0), (^, -3), (ç, -3). 

Let us calculate the residue A of <j>{2Kx) at a simple pole 
x — a of the form (8). If £ divides ha with an odd quotient, the 
limit as x—>a of 

O - a)>2K't(ha-2Kx) 

is readily seen to be (— \)m2+l/(ha). If the quotient is even, the 
limit as x-^a of t(ha-2Kx)/((x--a)2K) is simply ha. Write 
j3 = 2Xa. By (4) and (5) and the preceding remarks, we find 

A = lim T(X — a)<t>{u) = lim 2K(x — a)^\it{lbu)[]^ht{hau) 
(10) , , 

= eiii^w)ii^(*^), 
where the primes indicate that the factors for which p \lb or 
p \ha are omitted, and Q is the product of the proper numerical 
factors (-l)m2+y(ha), ha, ( - l)m2+1/(/a), /a for these omitted 
values h and I. 

Now we readily verify that 

(11) t(u + iK')t(u) = 1 = - /(«)/(« + iO, 

(12) t(u + 2iK') = t(u) = *(« + 22T), 

(13) t$K) = 1, /(Jitf') = i. 

Hence, if p$ — (2m-\-l)K + 2niKf, m, n being integers, 

(14) t(rp)t(f=~rP) = 1 = - Krfit(pT~rP), 
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(is) tQpp) = ( - i ) « . 

If pp = 2mK+(2n+l)iK', 

(16) Kr0)t(p~^?0) = - 1 = - <(r/3)*(#+7|3), 

(17) tQpfl) = ( - l ) - t . 

Hence in the products J J ' in (10), two factors the sum or dif
ference of whose arguments is pf3 multiplied by an odd integer 
combine into a constant independent of k, and similarly for 
single factors ti^psfi), s odd. 

Let a = l, 6 ^ 9 . Consider the pole a = 1/(6 — 3), whence 
£ = i ( j —3)^ mi = l, m2 = 0. Except for a constant factor in
dependent of k, the residue A is, by (14) and (15), 

t(Ub- l)2Ka). 

This actually depends on k, since it reduces to 1 if k = 1, and to 
tan ( T T / ( 6 - 3 ) ) if * = 0. 

Let & > a > 1, and consider a = 1/(2 ƒ>), p = §(6 — l)a. The second 
factor 11' in (10) is independent of & as above, butILit(lbf3) is seen 
to depend on k, since it has the value 1 if fe = l, and the value 
Ul tan (Z6TT/( (6- \)a)) 5* 1 if k = 0. 

Let a = l, 6 = 3. Then <j> = (2K/ir)t(u). The poles in P are 
given by p = l, m\ — \ or 0, m2 = 0 or 1, and the residues A are 
respectively — 1 and + 1 by the rule for forming Q. 

L e t a = l, 6 = 5. Then <£ = (2K/iç)t{u)t{2u). Only p = 2 defines 
poles; and with it Wi is 0 or 2, ra2 is 1 and 3, and vice-versa. By 
(15) and (10) the residues ,4 fo rw iodda reK~l ) ( M l ~ 1 ) / 2 - BY (10) 
and (17), A = + i*(-1)<"*-»/* if m2 is odd. 

We can easily derive Nazimoff's series for x2-\-3y2 and x2 + 5;y2. 
Let a = 1,6 = 7, cf>(u) = (2K/Tr)t(u)t(2u)t(3u). If £ = 1, each n ' 

in (1) is trivially unity, and 

4 = Q = ( - i ) « r M . 2 . ( _ 1 )«H-I /3 = f 

in all cases. If p = 2, () = (-l)™2+i/2, and /(|8)/(3j8) = ( - 1 ) " Y H 

by (14) and (16). H e n c e ^ l = | in all cases. If >̂ = 3,Ç = ( - 1 ) W 2 + I / 3 , 
and/03M2/5) = ( - l ) " i b y (14) and (16). H e n c e 4 = ~ i 

I t follows that this method gives an immediate solution to 
the problem of finding the formula for N(n=ax2 + by2) only if 
a = l, 6 = 1, 3, 5, 7. 
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Write x = l/(ab), a = p+ar. On combining (4) and (5), we 
have to calculate 

(18)^^a{sin27rwa+sin27rw(tf — a)} = (l — cos27rnx)sn+($>m2Tmx)cn, 
ct 

sn = y^Aoi sin lima, cn = ^TjAa cos lima, 
a a 

where the summation is extended to the values a in P . Write 

(19) tn = YÏA«e2nfiirq2nff> 

where the prime indicates the omission of the values a=p+ar 
for which a — 0. Then 

00 

(20) X X j c t n wa + ctn w(x -a)} = 2% J2tn(e~2nTix - 1) 
a n—\ 

+ ]C^« { Ctn T(X + Ctn ^(^ -~ a) } • 
a 

Henceforth let a = 1, b = 7. The last sum in (20) is independent 
of k and must be equal to 71/2 in view of (1). Since the denomi
nators p of 2a are 1, 2, or 3 the calculation of sn, cn, tn may be 
done conveniently modulo 6. For positive integers r, we find 
that 

hr = ( - 1)rq6r + qSr + q9r - q2r - qAr ~ qSr - q10r, 

ter-, = q6r~\ hr-, = q3r'2 + {l + ( - I) '}?6 ' -4 + g9'"6. 

hr-z = ~ g2r~x + 24r~2 + g8r~4 ~ g10r~5, 

hr-2 = g3^1 + {1 + ( - l)'+l}<^-2 + ^9-3, ter-1 = g^"1 • 

And for any integer n, 

where yn is the sum of the terms Ae2npiir for <T = 0, that is, 

76r = (— l ) r , T6r-5 = — 1, T6r-4 = 1 + ( — l ) r , 

76r-3 = 0, 76r-2 = 1 + (— l ) r + 1 , Y6r-1 = — 1. 

Since tn is real for every n, and since 

Sn = 2^ \*n '—n) > 

5n is purely imaginary. We may drop the imaginary parts, which 
must annul each other. Hence 
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(21) 71'2 2> 2 + 7 " 2 = 71'* + 2 XX sin ^ 
#,2/ n = l 

* g2n 2»ir 
+ 4 2̂  r ^ s i n ~r~ ' 

ZÎ 1 - q*» 7 
Inserting the values of tni cn calculated above, we find for the 
right member of (21) the expression 

71/2 + 4 Y.— sin (12r - 10)— 
^ 1 + ^ " 5 7 

_ ^ 6 r ~ X 7T 

+ 4 T"—" sin (12r - 2)— 
^ 1 + g«^i 7 

+ 4 £ ( — + — ) sin (12r - 8) 
^ A l - g3-"2 1 - a6'"4 / (22) 

7 
g 3 r - l ( _ ! ) r + l g 6 r - 2 V ^ x 

+ 4 Z I T " - - - + \ J , ) sin (12, - 4) 

^ r - 2 _ q2r-l T 

+ 4 X r sin (12r - 6)-
1 + ?6'-3 7 

(_l)rg6r + g3r _ q2r _ ^4r 1 2 n r 

+ 4 2L, sin 
^ 1 - ^ 7 

The coefficient of qn in (22) may be calculated as follows. 
Write/(w)=2 sin (2m?r/7). Form all factorizations n~db of n 
into two positive factors and construct the following sums: 

X i / W t - l ) ^ 1 , £tf(2<0, 
i s l , 5 (mod 6) J s l , 2 (mod 3) 

J s 0, 2, 4 (mod 6) d s 1 (mod 2), N l , 2 (mod 3) 

£tf(2d), Ee[ - / (3<0]-
d s 0 (mod 3) d = 0 (mod 2) 
Ô s 1 (mod 2) Ô = 1,2 (mod 3) 

Hence we have 

(23) 1"*N{n = x2 + 7;y2) = 2^ ̂  + £ , + . • • + £ e \ 
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If n = m is prime to 6, this reduces to 

(24) 7U*N(m = *2 + 7;y2) = 2 £ [ƒ(<*) + ƒ (2 J) - f (3d)]. 
d\m 

We now make use of a (Gauss sum) relation, which may be 
proved if desired by comparing coefficients of a small power of 
g in (21): 

2dT Uir 6dir 1 / d \ 
(25) sin + sin sin = —f —J71 /2 . 

7 7 7 2 \ 7 / 
Hence, if m is prime to 6, 

(26) N(m = x2 + 7;y2) = 2 J^(d | 7). 

Making use of (23) for one case we can easily establish by in
duction the formula 

(27) N(n = x2 + 7;y2) = 2 | a - 11 £(<* | 7), 

where n = 2arn, m odd, a ^ O . 
The factor \a — 1 | for a primary component 2a is character

istic of a discriminant d = 4£>, Z) = l (mod 8). 
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