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ON T H E APPLICATION OF A T H E T A FORMULA TO 
R E P R E S E N T A T I O N IN BINARY 

QUADRATIC FORMS* 

BY GORDON PALL f 

In his remarkable 1885 dissertation,J Applications of the 
Theory of Elliptic Functions to the Theory of Numbers, Nazimoff 
uses the formula (1) to derive the number of representations in 
x2 + 3y2 and x2 + Sy2. Some of his theorems are not quite correct. 
He does not derive the series representing ^CX^*2"1"7^ since "the 
derivation is long and not difficult." He states that the method 
has only limited application, since generally in (4) the ^4's are 
functions of k. 

I t is the purpose of this paper to give the essential details for 
x2 + 7y2, and to prove that the only cases ax2 + by2, ab odd, which 
are actually solvable by NazimofFs method are a = l, & = 1, 3, 
5 ,7. The final result for x2 + 7y2 is of course far from new. 

At the time this paper was written the writer intended to 
examine the products of series involved in other cases than 
a = l, i = l, 3, 5, 7, in the hope of obtaining information on 
N(n=x2-\-lly2) or other cases of several classes in a genus. But 
since then an arithmetic method has been discovered of finding 
a simple formula for the number of representations in any posi­
tive, binary quadratic form. It is possible, after the details of 
this theory have been worked out, that there may be applica­
tions to elliptic and modular functions. 

The formula which Nazimoff uses is 

(1) 5 > « W = {ab)-^2<S>{2K/{ab)), 
x ,V 

where x, y run through all integers, a and b are given positive, 
odd, relative-prime integers, and 

2K (a~1>/2 (&-im 
(2) <t>{u) = J J t(lbu) I J Khau). 

* Presented to the Society at Pasadena, November 28, 1931. 
f National Research Fellow, California Inst i tute of Technology. 
t Translation by Arnold E. Ross, pp. 5-12. 
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Here t(u) is an abbreviation for the elliptic function 

snudnu êi(x)ê3(x) 
(3) = ; (u = 2Kx). 

en u #2(#)*M#) 
Thus N(n=ax2 + by2) is the coefficient of qn in the expansion 

in powers of q of the value foi x = l/(ab) of the elliptic function 
(ab)~l,2cj>(u). We shall see in a moment that the latter, with 
t(u), has the periods u = 2K and 2iK\ and, in many cases, only 
simple poles. When this is so we can express <fi(u) as a sum of 
simple theta-quotients with coefficients independent of u. For 
example, 

(4) <f>(u) 

the summation being extended to a representative set of poles 
x=a, and the coefficients A being the residues at these poles. 
When all the A's are absolute constants, independent of k, our 
problem can be solved, since we have the formula 

tfi'O) A q2r 

(5) = ctn TX + 4 y, s m 2irrx, 
ûi(x) r = i 1 - q2r 

with which to form a comparison power series in q. 
We use the notations of Tannery and Molk, whence 

(6) u = 2Kx, T = iK'/K, q = exp7r£r. 

Hence t(hau), t(lbu) have the periods x = 1, r, and 0(^) also has 
these periods. The poles of t(hau) are the zeros of the denomi­
nator &2(hax)&é(hax), namely 

(7) x = (mi + m2T)) 

2ah 

where mi, m2 are any integers of opposite parities; the zeros of 
t(hau) are given by (7) with mi = m2 (mod 2). These poles and 
zeros are simple. Hence, if p is a positive integer, the number a 
such that 

(8) a = (mi + m<2j)/(2p), (m\, m2) p) — 1, Wi ^ m2 (mod 2), 

is a zero or pole of t(hau) if and only if £ | t e , and is the former 
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or the latter according as ha/p is even or odd. The number of 
multiples of p in the sequence 

a, 2a, • • • , J(J — l)a, 

with an odd quotient for p cannot exceed the number with an 
even quotient by more than unity. Hence each product II in 
(2) has only simple poles. If they have poles in common, (j>(u) 
has a double pole. This occurs, for example, with £ = l i f a = & = 3 
(mod 4). For no pole a is #i(o0 = 0 . 

The poles of <j>(2Kx) in the parallelogram P = (0, 1, r, 1 + r ) 
are easily found by the preceding method. If a = l, b = 7 they 
are seen at once to be p+ar and cr+pr, where 

(9) (P, <r) = (i , 0), (1, 0), ( | , | ) , ( | , 0), (f, | ) , (*, 0), ( i *), (£, f), 

(^- ïï)- (^- ïï)> (ë-- 0), (^, -3), (ç, -3). 

Let us calculate the residue A of <j>{2Kx) at a simple pole 
x — a of the form (8). If £ divides ha with an odd quotient, the 
limit as x—>a of 

O - a)>2K't(ha-2Kx) 

is readily seen to be (— \)m2+l/(ha). If the quotient is even, the 
limit as x-^a of t(ha-2Kx)/((x--a)2K) is simply ha. Write 
j3 = 2Xa. By (4) and (5) and the preceding remarks, we find 

A = lim T(X — a)<t>{u) = lim 2K(x — a)^\it{lbu)[]^ht{hau) 
(10) , , 

= eiii^w)ii^(*^), 
where the primes indicate that the factors for which p \lb or 
p \ha are omitted, and Q is the product of the proper numerical 
factors (-l)m2+y(ha), ha, ( - l)m2+1/(/a), /a for these omitted 
values h and I. 

Now we readily verify that 

(11) t(u + iK')t(u) = 1 = - /(«)/(« + iO, 

(12) t(u + 2iK') = t(u) = *(« + 22T), 

(13) t$K) = 1, /(Jitf') = i. 

Hence, if p$ — (2m-\-l)K + 2niKf, m, n being integers, 

(14) t(rp)t(f=~rP) = 1 = - Krfit(pT~rP), 
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(is) tQpp) = ( - i ) « . 

If pp = 2mK+(2n+l)iK', 

(16) Kr0)t(p~^?0) = - 1 = - <(r/3)*(#+7|3), 

(17) tQpfl) = ( - l ) - t . 

Hence in the products J J ' in (10), two factors the sum or dif­
ference of whose arguments is pf3 multiplied by an odd integer 
combine into a constant independent of k, and similarly for 
single factors ti^psfi), s odd. 

Let a = l, 6 ^ 9 . Consider the pole a = 1/(6 — 3), whence 
£ = i ( j —3)^ mi = l, m2 = 0. Except for a constant factor in­
dependent of k, the residue A is, by (14) and (15), 

t(Ub- l)2Ka). 

This actually depends on k, since it reduces to 1 if k = 1, and to 
tan ( T T / ( 6 - 3 ) ) if * = 0. 

Let & > a > 1, and consider a = 1/(2 ƒ>), p = §(6 — l)a. The second 
factor 11' in (10) is independent of & as above, butILit(lbf3) is seen 
to depend on k, since it has the value 1 if fe = l, and the value 
Ul tan (Z6TT/( (6- \)a)) 5* 1 if k = 0. 

Let a = l, 6 = 3. Then <j> = (2K/ir)t(u). The poles in P are 
given by p = l, m\ — \ or 0, m2 = 0 or 1, and the residues A are 
respectively — 1 and + 1 by the rule for forming Q. 

L e t a = l, 6 = 5. Then <£ = (2K/iç)t{u)t{2u). Only p = 2 defines 
poles; and with it Wi is 0 or 2, ra2 is 1 and 3, and vice-versa. By 
(15) and (10) the residues ,4 fo rw iodda reK~l ) ( M l ~ 1 ) / 2 - BY (10) 
and (17), A = + i*(-1)<"*-»/* if m2 is odd. 

We can easily derive Nazimoff's series for x2-\-3y2 and x2 + 5;y2. 
Let a = 1,6 = 7, cf>(u) = (2K/Tr)t(u)t(2u)t(3u). If £ = 1, each n ' 

in (1) is trivially unity, and 

4 = Q = ( - i ) « r M . 2 . ( _ 1 )«H-I /3 = f 

in all cases. If p = 2, () = (-l)™2+i/2, and /(|8)/(3j8) = ( - 1 ) " Y H 

by (14) and (16). H e n c e ^ l = | in all cases. If >̂ = 3,Ç = ( - 1 ) W 2 + I / 3 , 
and/03M2/5) = ( - l ) " i b y (14) and (16). H e n c e 4 = ~ i 

I t follows that this method gives an immediate solution to 
the problem of finding the formula for N(n=ax2 + by2) only if 
a = l, 6 = 1, 3, 5, 7. 
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Write x = l/(ab), a = p+ar. On combining (4) and (5), we 
have to calculate 

(18)^^a{sin27rwa+sin27rw(tf — a)} = (l — cos27rnx)sn+($>m2Tmx)cn, 
ct 

sn = y^Aoi sin lima, cn = ^TjAa cos lima, 
a a 

where the summation is extended to the values a in P . Write 

(19) tn = YÏA«e2nfiirq2nff> 

where the prime indicates the omission of the values a=p+ar 
for which a — 0. Then 

00 

(20) X X j c t n wa + ctn w(x -a)} = 2% J2tn(e~2nTix - 1) 
a n—\ 

+ ]C^« { Ctn T(X + Ctn ^(^ -~ a) } • 
a 

Henceforth let a = 1, b = 7. The last sum in (20) is independent 
of k and must be equal to 71/2 in view of (1). Since the denomi­
nators p of 2a are 1, 2, or 3 the calculation of sn, cn, tn may be 
done conveniently modulo 6. For positive integers r, we find 
that 

hr = ( - 1)rq6r + qSr + q9r - q2r - qAr ~ qSr - q10r, 

ter-, = q6r~\ hr-, = q3r'2 + {l + ( - I) '}?6 ' -4 + g9'"6. 

hr-z = ~ g2r~x + 24r~2 + g8r~4 ~ g10r~5, 

hr-2 = g3^1 + {1 + ( - l)'+l}<^-2 + ^9-3, ter-1 = g^"1 • 

And for any integer n, 

where yn is the sum of the terms Ae2npiir for <T = 0, that is, 

76r = (— l ) r , T6r-5 = — 1, T6r-4 = 1 + ( — l ) r , 

76r-3 = 0, 76r-2 = 1 + (— l ) r + 1 , Y6r-1 = — 1. 

Since tn is real for every n, and since 

Sn = 2^ \*n '—n) > 

5n is purely imaginary. We may drop the imaginary parts, which 
must annul each other. Hence 
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(21) 71'2 2> 2 + 7 " 2 = 71'* + 2 XX sin ^ 
#,2/ n = l 

* g2n 2»ir 
+ 4 2̂  r ^ s i n ~r~ ' 

ZÎ 1 - q*» 7 
Inserting the values of tni cn calculated above, we find for the 
right member of (21) the expression 

71/2 + 4 Y.— sin (12r - 10)— 
^ 1 + ^ " 5 7 

_ ^ 6 r ~ X 7T 

+ 4 T"—" sin (12r - 2)— 
^ 1 + g«^i 7 

+ 4 £ ( — + — ) sin (12r - 8) 
^ A l - g3-"2 1 - a6'"4 / (22) 

7 
g 3 r - l ( _ ! ) r + l g 6 r - 2 V ^ x 

+ 4 Z I T " - - - + \ J , ) sin (12, - 4) 

^ r - 2 _ q2r-l T 

+ 4 X r sin (12r - 6)-
1 + ?6'-3 7 

(_l)rg6r + g3r _ q2r _ ^4r 1 2 n r 

+ 4 2L, sin 
^ 1 - ^ 7 

The coefficient of qn in (22) may be calculated as follows. 
Write/(w)=2 sin (2m?r/7). Form all factorizations n~db of n 
into two positive factors and construct the following sums: 

X i / W t - l ) ^ 1 , £tf(2<0, 
i s l , 5 (mod 6) J s l , 2 (mod 3) 

J s 0, 2, 4 (mod 6) d s 1 (mod 2), N l , 2 (mod 3) 

£tf(2d), Ee[ - / (3<0]-
d s 0 (mod 3) d = 0 (mod 2) 
Ô s 1 (mod 2) Ô = 1,2 (mod 3) 

Hence we have 

(23) 1"*N{n = x2 + 7;y2) = 2^ ̂  + £ , + . • • + £ e \ 
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If n = m is prime to 6, this reduces to 

(24) 7U*N(m = *2 + 7;y2) = 2 £ [ƒ(<*) + ƒ (2 J) - f (3d)]. 
d\m 

We now make use of a (Gauss sum) relation, which may be 
proved if desired by comparing coefficients of a small power of 
g in (21): 

2dT Uir 6dir 1 / d \ 
(25) sin + sin sin = —f —J71 /2 . 

7 7 7 2 \ 7 / 
Hence, if m is prime to 6, 

(26) N(m = x2 + 7;y2) = 2 J^(d | 7). 

Making use of (23) for one case we can easily establish by in­
duction the formula 

(27) N(n = x2 + 7;y2) = 2 | a - 11 £(<* | 7), 

where n = 2arn, m odd, a ^ O . 
The factor \a — 1 | for a primary component 2a is character­

istic of a discriminant d = 4£>, Z) = l (mod 8). 
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