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For, the given identity implies 

dîr + b2r + ' ' ' + C2r = 0, {f = 0, 1, • • • ) \ 

and therefore 

po(a0 + bo + • • • + Co) + p2(a2 + b2 + • • • + c2) + • • • 

+ p2S(d28 + b2s + ' ' ' + c28) = 0; 

which is the stated conclusion. 
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1. Introduction. This paper is devoted to an operation that is 
defined for an arbitrary topological f space E and is analogous 
to the operation of constructing the combinatorial product 
spaces. J We shall be concerned with the topological properties 
of point sets defined by means of the above operation when 
executed on the segment 0 S x S 1. 

Let E be an arbitrary topological space. Let En denote the 
nth topological product of the space £ , that is, the space whose 
elements are ordered systems (#i, x2} • • • , xn) of points a^eE. By 
a neighborhood of a point (xi, x2, • • • , xn), we understand the set 
of all systems (#/ , x2 , • • • , x^ ), where x( belongs to a neigh­
borhood Ui of the point Xi in the space E. X 

The operation with which we are concerned in this paper con­
sists in constructing a space which we shall call the ^th sym­
metric product of the space E and denote by E(n). Its elements 
are non-ordered systems of n points (which may be different or 
not) belonging to E. Two systems differing only by the order or 
multiplicity of elements are considered identical. A non-ordered 
system or simply a set consisting of n points x\, • • • , xn from the 
space E will be denoted by I }. If Ui is a neighbor­
hood of the point Xi in the space £ , then the set of all systems 

* The definition of symmetric products is given below. 
f In the sense of Hausdorff, Grundziige der Mengenlehre, p. 228. 
t See, for example, F. Hausdorff, Grundziige der Mengenlehre, p. 102. 
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{x{, xi, - - -, Xn } such that {x{, xi, • • • , xl } c^^Ui and 
Ui- {x{, #2', • • • , Xn } 5*0 for i = l, 2, • • • , w will be, by defini­
tion, considered as the neighborhood of the point {xi, #2, • * -,#n} 
in the space E(n). 

I t may be important to observe that the sets E{n) constitute 
a monotonie sequence of subsets of the space 2^,* that is, the 
space whose elements are compact subsets of the space E.f The 
sets E(n), with finite dimensionality, J if E is compact and of 
finite dimensions, approximate in a certain sense the space 2E\ 
we have, in fact, the following formula: 

2*= Z^M-

The study of E(n) may, therefore, throw some light on the 
structure of 2^.§ 

In the case where E is a metric space and \x' — x \ denotes the 
distance of two points x, x'eE, we may consider En> and E(n) 
also, as metric and by means of the following formulas define the 
distance of two points of these spaces : 

n 

I \%ly %2y ' ' ' j Xn) \Xl j %2 j " " * j Xn ) | = = V / J \ X{ X% | ) 

and 

j { Xi} #2> * * ' ) Xn J { X\ , %2 y ' ' ' j Xn \ I 

= Max[ Sup Inf | Xi — xj \ ; Sup Inf \ x3- — Xi | ], 

respectively.^ 
We shall show that, generally speaking, the operations of 

constructing the combinatorial and the symmetric product of 
the space E lead to topologically different results. Thus in the 

* This very convenient notation was introduced by C. Kuratowski, Funda­
menta Mathematicae, vol. 17. 

f F. Hausdorff, Grundzüge der Mengenlehre, p. 293. 
t See (b), §2. 
§ The space 2E has been recently an object of some studies. See F. Haus­

dorff, Grundzüge der Mengenlehre, p. 145; S. Mazurkiewicz, Fundamenta 
Mathematicae, vol. 16, p. 151, and others. 

1f See Hausdorff, loc. cit. 
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case where E is a one-sphere, that is, the circumference of a 
circle, E2 is the surface of an anchor ring (torus) and E{2) is 
the well known one-sided Möbius strip. Neither of these sets is 
topologically contained in the other. This example may suffice 
to show that the symmetric products are apt to be used as 
means of simple definitions of interesting topological spaces. 

In this paper, however, we shall be concerned with the space 
I(n), I being the segment 0 ^ x 5 ^ 1 . The first question to be 
treated is whether or not I(n) is topologically equivalent with 
a subset of the ^-dimensional euclidian space Rn (R is the set 
of all real numbers). 

We formulate our problem in the following manner in order 
to emphasize certain algebraic analogies. 

A real-valued function 4>{xi, x2, • • • , xn) of n real variables will 
be called essentially symmetric if and only if its value depends 
upon the set xi, x2, • • • , xn and not upon the order or multi­
plicity of the x's. Our problem may now be given the following 
formulation: Does there exist a system of functions <f>%(xu #2, 
- - • , xn), (i = l, 2, • - - , n), which satisfies the conditions (a) 

the functions <ƒ>* are essentially symmetric and continuous for 
0 ^ x S 1 ; (b) the system of equations <f>i{x\, x2, • • • , xn) = y% has 
at most one solution for every system yi, y^, • • • , yn? 

We show in §9 that the answer to our question is affirmative 
for i = \, 2, 3 and negative for i ^ 4 . 

2. Invariants. Let us consider a function 4> defined on the set 
En by the formula 

4>\Xi, X2y ' ' ' y Xn) = [Xi, X2) ' ' ' ) Xn J . 

This function transforms En on E(n) continuously and every 
point belonging to E(n) is an image of at most n\ points of the 
set En. If we recall well known properties* of the space En and 
continuous transformations, we obtain the propositions: 

(a) The properties local-connectedness, separability, compact­
ness, arcwise connectedness, absolute Gs, compactness and local 
connectedness at once, are invariants under the operation of con­
structing the symmetric product. 

(b) If E is compact, then 

* F . G. van Dantzig, Fundamenta Mathematicae, vol. 15, p. 117. 
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D i m E n ^ Dim(£(»)) ^ DimEn + n\ - 1 g ^ * - D i m £ + ^ ! - l . f 

The question whether or not the following topological proper­
ties are invariants by the operation of symmetric product 
remains unsolved : 

(a) To be a locally connected unicoherent continuum. 
(j3) To possess a fixed point. 
(7) To be an n-dimensional Cantor manifold. 
(8) To be an absolute retract.% 
I t may also be interesting to know the exact relation between 

the dimensions of E and E(n). Finally we wish to find the rela­
tion, if any, between the combinatorial characters, that is, the 
Betti and torsion numbers, of E and E(n). 

3. THEOREM 1. Let A be an everywhere dense subset of the dense 
space E. Then A(n)-E(n-1) =E(n) for n = 2, 3, 

Let {#1, #2, * * * » xn}eE(n) and C/^be, for i = l, 2, • • • , w, any 
arbitrary neighborhood of the point Xi in E. 

We have to show that there exists a set {x{ , xl, • • • , xl } eA 
(n)—E(n — l) such that {x/, xl, • • • , xl } c^y^Uiand 

{x{, x{, - - • , xl } - Ui 9^ 0 for i = 1, 2, • • • , n. 

The set A constitutes an everywhere dense subset of E. 
Hence for each i = l, • • • , n, there exists a sequence [x®] con­
sisting of different points of the set A • V{. Putting Xi — #1 and 
supposing that for a certain p such that l^p^n the points 
xi =xk

2p> • • • , Xp =x(
k
2
p
) are already defined, we put xj+i equal 

to the first term from the sequence x)^l) different from all xl. 
Thus we obtain n different points xl, xl, • • • , xl eA or a 
point {xl, xl y • • • , xl } from the set A (n)—E(n — l ), such that 
XP ^x^kptUp- Hence the theorem is proved. 

4. THEOREM 2. The set I(n)—I(n — 1), for n = 2, 3, • • • , is 
homeomorphic with a subset of Rn. 

Let T be a subset of Rn consisting of all points (xi, #2, • • • , xn) 
which fulfill the conditions 0 ^ # i < # 2 < • • • <xn^l. For 

* W. Hurewicz, Proceedings of the Amsterdam Academy, vol. 30, p. 164. 
f K. Menger, Dimensionstheorie, p. 246. 
t A subset B of A is a retract of A if there exists a continuous function/, de­

fined on A, such that f (A) — B and for every xeB, f(x) — x. An absolute retract, 
is, by definition, a homeomorph of a retract of the fundamental Hubert cube. 
See K. Borsuk, Fundamenta Mathematicae, vol. 17, p. 153 and p. 159. 
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(#1, #2, • • • , #n)enetusput i / ' (x i , x2l • • • ,xn)={xi, x2, • • -,xn}. 
I t is evident that ^ is a homeomorphism which carries T on 
I(n)—I(n — 1), which was to be proved. 

5. THEOREM 3. Dim I(n) = n. 

In view of 1 (b) and the known fact that Dim In==nit will be 
sufficient to prove that 

(1) D i m / ( » ^ n. 

The truth of inequality (1) is evident if n = 1, that is, 7(1) is iden­
tical with the segment O ^ x ^ l . Let us suppose now that for 
a certain k the inequality (1) is proved. The set I(k + 1)—I(k) 
is open ((a), §2); hence it is an F9 of dimension at most k + 1. 

Regarding equality I(k + 1) = / ( & ) + [l(k + l) - / ( * ) ] and ap­
plying Menger's "Summensatz,"* we obtain the desired in­
equality. 

6. THEOREM 4. Let A denote the segment I without its two ends : 
A = I—(0) —(I). Then, f or each pair of points, {x{, x{, • • • , # / } 
and \x{', x2', • • • , x" } of set A(n)—I(n — 1) for n = 2y 3, • • •, 
there exists a subset of A (n) — I(n— 1) homeomorphic with In and 
containing both points. 

PROOF. We do not diminish the generality if we put 

C 0 < x{ < xi < • • • < xJi < 1, 

I 0 < %[' < xl' < • • • < xi' < 1, 

and for a certain i0, ( 1 ^ ' o ^ w ) , 

\o) X{0 \ XiQ. 

Let us put for each (h, t2, • • • , tn)eRn 

( Xi(fi9 t2, • • • , O = a;/ + ti0(x-' — X-) + h, for i 9*i0> 

From (2) and (4) it follows that there exists a positive number 
a such tha t the inequalities 

(5) 0 ^ 0 g 1, and \h\ ^ x 

include the inequalities 

* See K. Menger, Dimensionstheorie, p. 93. 
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(6) 0 < Xi(h, h, ' • * , tn) < X2{th k, ' ' ' , tn) 

< < Xn(h, h, ' ' ' , tn) < 1 . 

The points of Rn with the coordinates tu k, • • • , tn which 
satisfy the inequality (5) form in Rn a set Pn homeomorphic 
to In. For each point (h, k, • • * , tn)ePn let us put 

f{hy hy ' * * , tn) = \Xi{h, k, - • • , tn), 

X2{tly ^2, ' * ' , tn), ' ' ' , Xn{tl, t2, ' ' ' y O } • 

This is a continuous function on the compact set Pn and, with 
regard to (3) and (4), a one-to-one correspondence (the second 
of the equations (4) can be solved for t^, the rest for h, i^i0). 
Since the f unction ƒ carries Pn homeomorphically on a subset of 
the set A {n) — I{n — 1) (from (6)) and 

jf(0, 0, ' • • , 0) = { x{ y %2 y ' ' • , Xn' } y 

f{0, 0, • • • , 0, 1, 0, • • • , 0) = {*ƒ', xi' y • • • , *n" }, 

our theorem is proved. 

7. THEOREM 5. 7(w) is an n-dirnensional, locally-connected 
Cantor manifold* 

In view of (a), §1, and Theorem 3, it remains to be shown that 
no compact {n — 2)-dimensional subset C from I{n) cuts I{n). 
Since In is an ^-dimensional Cantor-manifold,f it follows from 
(5) that A {n) —I{n — \) — C is connected and everywhere dense 
in A {n)— I{n — 1). Hence, it follows that from §3 

A{n) - I{n - l ) ~ C c I{n) - C c I{n) 

= T ô ô ^ T ô T ^ = X(¥)^T(^~T)" ~Cy 

which includes the fact that I{n) — C is connected. 

8. THEOREM 6. .For n = 1, 2, 3, J(w) is a homeomorph of In. 

PROOF. Let {x, y, z}el{3). Since order and multiplicity do not 
matter, we can suppose that O^x^y^z^ 1. Moreover, x= y if 
and only if x = y = z. Let us put 

(7) f{{xy y,z}) = (£(*, y y z), r){xy y, z)y f(x, y, z)) 

* See, for example, K. Menger, Dimensionstheorie, p. 217. 
t K. Menger, Dimensionstheorie, p. 268. 
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where the coordinates £, rj, f of the points (£, rjf Ç)eRs are defined 
by the formulas 

\(z — x) • sin I 27T ), if z > # : 

(8) *(*,:y,*) = j V *-*/ ' 
^ 0, if z = x ; 

| (2 — X) • COS ( 27T ), if Z > X] 

\ x — z/ (9) rj(x, y, z) = 

^ 0, if z > x ; 

(10) fO> ?, *) = *• 

It is easy to observe that ƒ transforms 7(3) homeomorphically 
on a cone 5, whose base is a circle in the plane f = 0 with the 
center (0, 0, 0) and radius 1 and whose vertex is the point 
(0, 0, 1); f(1(2)) is a triangle with vertices (0, 0, 0), (0, 1, 0) 
and (0, 0, 1). Finally f(1(1)) is a segment L with the ends 
(0, 0, 0) and (0, 0, 1). As a cone is homeomorphic with P and a 
triangle with I2, we obtain our theorem. 

9. THEOREM 7. For n^4, I(n) is not homeomorphic with any 
subset of Rn. 

Let J denote the segment — l ^ x ^ l . Noting that I(n) and 
J(n) are homeomorphic, it will be sufficient to prove that there 
does not exist a homeomorphism h between J(n) and a subset 
of Rn. Let 
(ll)Q=E{Xty)Z)Xir .',xn-i} [ O ^ y ^ s ^ l , y = xiîandon\yiîx = y = z, 

and X% ~T" 

n 

1 , 
^ — for 1 S i ^ n - 3 ] . 

3^ 
Let us say, for each {x, y, z, xi, #2, • • • , xn^\eQsy where 
%j yj ZJ #1» #2, • • • , #n-3 are chosen in such a way that the in­
equalities (11) are satisfied, that 

4>({x, yy z, xh x2, - - • , xn_3}) = (£, 17, f, £1, €2, • • • , £«-s), 

where £, ??, f are defined by (8), (9), (10), and 

(12) fc= *, + —, (* = 1, 2, • - . , » - 3). 

From the definition of <j> and the properties of ƒ expressed by 
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(7) it follows immediately that <j>(Q) is a combinatorial product* of 
S and an (n — 3)-dimensional product of the segment [—1/(3^), 
l/(3n)]t tha t is, topologically a homeomorph of I71. The point 

ƒ({*, h i}) is (by (7), (8), (9) and (10)) an inner point of the 
cone S; it follows that the point 

(13) « 1 1 1 1 2 n - 3 \ \ 

2 2 2 n n n ) / 
is an inner point of <£((?). 

Applying Brouwer's theoremf of the invariance of region in 
Rn, we conclude tha t the point h(\, h h —l/n, —2/n, • • , 
— (n — 3)/n) is an inner point of h(J(n)). Now let us consider 
the sequence [pk] of points from the set J(n) : 

ƒ 1 1 1 1 1 2 n- 3\ 

12 2 n 3kn n n n ) 

We have pu non eQ and 

( 1 1 1 1 2 n - 3) 
l i m pk == \ — ) — > — > f y - - - > > . 
**co ( 2 2 2 n n n ) 

Noting that h is a homeomorphism, we have further h(pk)eRn 

-h(Q) and 

« 1 1 1 1 2 n-3}\ 

2 2 2 n n n )) 
which is impossible by (13). This proves our theorem. 

I t may be interesting to know whether or not I(n) is homeo-
morphic with a subset of Rn+l. 

Lwow, POLAND 

* See Hausdorff, Mengenlehre. 
t L. E. J. Brouwer, Mathematische Annalen, vol. 71, pp. 305-313. 


