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CONCERNING ADJUNCTIONS TO ALGEBRAS 

BY J. L. DORROH* 

In §3 of his paper, Algebras which do not possess a finite basis ^ 
J. H. M. Wedderburn gives a set of postulates and definitions for 
an algebra. The question of the possibility of adjoining an iden
tity to such an algebra arises. The purpose of the present paper 
is to show that this adjunction is always possible. 

I t may be seen from the arguments that Theorems 1 and 2 re
main true if the term algebra be replaced by one implying a set of 
elements of which it is assumed only that it is an abelian group 
under addition and a semi-group under multiplication.The proof 
of Theorem 3 employs a distributive property, as will be in
dicated. 

THEOREM 1. J If A is an algebra, then there exists an algebra B 
which contains a proper, invariant subalgebra A1 isomorphic^ 
with A and an element I not in A' such that, for every element b 
of B, the relation Ib = bl = b holds. 

If x is an element of A and n is a positive rational integer, 
let nx = xn denote the sum x+x+ • • • +x (n summands) and 
let ( — n)x = x( — n) denote the same sum as n( — x). Let Ox 

Let B denote the set of all pairs (n, x) where n is a rational 
integer and x is an element of A. Suppose that (n, x) + (m, y) 
= (n+m, x+y). Then B is an abelian group under addition. Let 
(n, x) (m, y) = (nm, ny+mx+xy). Then B is an algebra and the 
subset A' of B consisting of all the elements of B of the form 
(0, x) is isomorphic with A and is invariant in B. Let / denote 
the element (1, 0) of B; (1, 0) (n, x) = (n, x) (1, 0) = (n, x) for 
every n and x. 

The multiplication in B is distributive, associative and distri
butive, commutative, respectively, provided the same is true 
for i l . 

* National Research Fellow. 
t Transactions of this Society, vol. 26 (1924), pp. 395-426. 
t For a proof of this theorem for an algebra with a finite basis, see, for ex

ample, L. E. Dickson, Algebras and their Arithmetics, 1923, p. 97. 
§ In this paper isomorphism means simple isomorphism. 
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THEOREM 2. If an algebra A has the properties 

(1) if x is an element of A and m is a positive rational integer, 
A contains an element y such that my = x ; 

(2) if x is an element of A and m is a positive rational integer 
and x9*0, we have mx^O; then there exists an algebra B which con
tains a proper, invariant subalgebra isomorphic with A and a pro
per subalgebra isomorphic with the rational field. 

If x is an element of A and m is a positive integer, it follows 
from (1) that A contains an element y such my — x; let y be 
denoted by x/m ; it follows from (2) that x/m is unique. 

If r is a rational number, let r = m/n, where m and n are integers 
and n is positive. Let rx = xr = m(x/n) for each element x of A. 
Then rx is unique, for suppose that m and n have been chosen 
relatively prime and let k denote a positive integer, then 
km(x/(kn))=m(x/n), for kn[km(x/(kn)) ] = kmx = kn[m(x/n) ] 
and the equality of the brackets follows from (2). 

Let B denote the set of all pairs (r, x) where r is a rational 
number and x is an element of A. Under the following rules for 
addition and multiplication B is an algebra: 

(1) (r, x) + (r', x') = (r + r',x + xf), 

(2) (r, x)(r', xf) = {rrf
yrx' + r'x + xxf). 

The element (1, 0) of B is its identity, since we have (1, 0) (r, x) 
= (r,x) = (r,x) (1,0) . 

The set of all the elements of B of the form (0, x) is a proper, 
invariant subalgebra of B and it is isomorphic with A. 

The set of all the elements of B of the form (r, 0) is a proper 
subalgebra of B isomorphic with the rational field. 

The multiplication in B is distributive, associative and dis
tributive, commutative, respectively, provided the same is true 
for A. 

THEOREM 3. If A is an algebra subject to condition (2) of 
Theorem 2, there exists an algebra B which contains a subalgebra 
isomorphic with A and such that, if b is an element of B and n is 
a positive rational integer, B contains a unique element c such that 
nc = b. 

In the set D of all pairs (r, x), where r is a rational number and 
x is an element of A, (r, x) will be said to be equivalent to 
(rf, x') if svx = tux', where r = s/t and rf = u/v, and where s, t, u 
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and v are integers and / and v are positive. This relation will be 
denoted by (r, x)~(r', xf). From the hypothesis concerning A 
it follows that the equivalence of (r, x) and (r', xf) is indepen
dent of the choice of rational expressions for r and r'. 

(1) (r, * ) ~ ( r , *) . 
(2) If (r, x)~(r', x'), then (r', #')~(f> %)• 
(3) If (r, # ) ~ ( r ' , x') and (r', # ')~0'"> #")> then also (r> # ) ~ 

(r", x"). Let r = s/t, r' = u/v, r" = p/q; s, t, u, v, p, q integers 
and / > 0 , v>0, q>0. If svx = tuxf and uqx' = vpx", then 

*svqx = tuqx' and tuqx' = tvpx" ) hence svqx — tvpx" and therefore 
sg# = ^ x " . 

Let (r, x) + (r', #') = (l/(ft;), $z/#+/w#'), where r = s/t, r' = u/v; 
s y t, u, v integers and t, v positive. If (r', x')~(r", x"), then 
(r, x) + (r /, x')~(r} x) + (r", x"). Let r" = p/q\ py q integers 
and g > 0 . Then (r, *) + ( r " , * " ) = (l/(/g), sqx+ptx"). By hypo
thesis uqxf — vpx". Hence we have tuqx' — tvpx" and therefore 
(l/(tvq)y svqx+tuqx')~(l/(tvq), svqx+tvpx"), but (l/(tvq), 
svqx+tuqx')~(l/(tv), svx + tux') and {\/{tvq)y svqx+tvpx") 
~( l / (*g ) , sqx+tpx"). I t follows that if (r, *0~( r" ' , * '") and 
(r', * ' ) ~ ( r " , * " ) , then (r, *) + (r', x ' ) ~ ( ' " ' , *"') + ( '". * " ) . 

Let (r, x)(r ' , x') = (rr', xxf). Then if (r', x')~(rn, x"), 
(r, x)(r ' , # ' )~(r> x)(r"ix"). For by hypothesis ^gx' = z;£#" and 
hence uqxx' =vpxx" (r = s/t, r' = u/v, r"=p/q as before), and 
hence* stuqxx' = stvpxx''. Similarly (r',x')(r, x)~(rn,x")(r9 x). 
Hence if (r, * ) ~ ( r ' " , * ' " ) , then (r, *)(r ' , * ' ) ~ ( ' " ' . * ' " ) 
• ( r " , * " ) . 

For each rational number w let w(r, x) = (r, x)ze> = (wr, x). 
For each (r, x) of D let C(r,ao denote the class of all pairs 

(r ' , x ') of Z? such that (r', xO^Cf, #). Then C(r.ta.) — C( ,.",*") if, 
and only if, (r, x ) ^ ( > " , x " ) . Let C(r,x) + C(r>tx>) = C(r,x)+(r'tx') 
and let C(r,aoC(r',»') = C(r,x)(r',x').'\ These products and sums 
are unique. For each rational number w let «/C(f,x)= [C<r,*)]w 

* To establish this equation and the corresponding one implied by the suc
ceeding expressions in the text, it is sufficient to assume that if n is a positive 
rational integer and x and y are elements of A, then x(ny)=*nxy and (ny)x 
— n(yx). That this is a distributive property is seen from the definition of ny. 

t For convenience the ordinary symbols for addition and multiplication 
are retained, although the operations are not the ones they would ordinarily 
indicate for classes. 
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Let B denote the collection of all the classes C{r>x). Then B 
is an algebra. The subset A ' of B consisting of all the classes 
C(i,X) of B is isomorphic with A and is identical with B if, and 
only if, for each element x of A and each positive rational integer 
mt A contains an element x/m such that m(x/m) =x. 

If C(r,x) is an element of B and m is a positive rational integer, 
then C(r/m,x) is an element of B and mCir/m,x) = C(r,x). 

Multiplication in B is associative, commutative, distributive, 
respectively, if the same is true for A. 

PRINCETON UNIVERSITY 

ON THE RANK OF THE PRODUCT OF CERTAIN 
SQUARE MATRICES* 

BY W. O. MENGE 

1. Introduction. This paper presents several theorems which 
were found during an investigation conducted by the author in
to the structure of matrices which transform given matrices in
to their so-called classic and rational canonical forms, t When 
the elementary divisors of a given matrix are known, these 
theorems completely determine the rank of a product of ma
trices of the form 

fliA-XJ)"'. 

An interesting proof of the Hamilton-Cayley theorem and a de
termination of the equation of minimum degree satisfied by a 
matrix are obtained from this point of view. 

2. Invariant Factors. Consider the square matrix A = (ai;-) of 
order n with constant elements. If the w-rowed identity matrix 
be denoted by 7, the characteristic matrix (A —XI) is defined as 
the matrix obtained by subtracting the variable X from each 
principal diagonal element of A. The determinant, D(X), of the 
characteristic matrix (A — XJ) is called the characteristic de-

* Presented to the Society, December 30, 1930. The author wishes to ac
knowledge his appreciation to J. A. Nyswander, University of Michigan, for 
many helpful suggestions throughout the progress of the work. 

t Dickson, Modern Algebraic Theory, Chap. 5. 


