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All intersector sequences of order three will be closed if the 
invariant 

pKpW + PI2P2) + 2ps
12pl1a>(3> 

vanishes. This can happen either if p = 0, a = 0 (or j3 = 0), or 
a = 0, j8 = 0. In the first case one branch of the flecnode curve of 
Ryz is plane, (a = 0), and R^ degenerates into the tangents of a 
plane curve. In the second case both branches of the flecnode 
curve of Ryz are plane and R^ degenerates into a straight line. 

I t is obvious that in the preceding developments the order of 
the lines lyz, / ^ , lnd can be reversed without in any way affecting 
results. The analysis would be based upon a system of first-
order equations of the same type as (4), (5) and obtainable from 
(4), (5) by simple processes. 
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I t is the purpose of this note to discuss the reducibility of 
linear associative algebras which are not assumed to possess a 
finite base. J. H. M. Wedderburn,f in seeking to generalize 
certain theorems on the structure of an algebra, has considered 
algebras in which restrictions are placed upon the character of 
the idempotent elements. The summations involved in his 
study need not be finite. This seems to be one natural line of 
attack. 

J. W. YoungJ has approached the subject from the point of 
view of the groups involved. His definition of a finite algebra is, 
however, unsatisfactory, not being sufficiently restrictive. 

I have studied infinite algebras in connection with the results 
that can be obtained by a use of the "axiom of choice" and the 
theory of transfinite ordinals. This note, however, does not 

* Presented to the Society, December 31, 1928. 
t J. H. M. Wedderburn, Algebras which do not possess a finite base, Trans­

actions of this Society, vol. 26 (1924), pp. 395-426. 
Î J. W. Young, A new formulation for general algebras, Annals of Mathe­

matics, vol. 29 (1927), pp. 47-60. See particularly p. 60. 
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assume the existence of an infinite base for an algebra but merely 
the usual postulates for a finite linear associative algebra A 
= [a] over a field E = [£], where the postulate requiring the 
existence of a finite base is replaced by the following extremely 
mild postulate: for every pair of elements a\ and a2 in the 
algebra A, we have 1-ai = a\ and a i + a 2 - 0 = a i , where the ele­
ments 1 and 0 are the unit and zero elements respectively of the 
field S over which the algebra A is taken. There is no difficulty 
in generalizing the elementary properties of 0 and of a principal 
unit if it exists. 

As in the finite case, a set S = [s] of elements of A is said to be 
a linear set if for every pair of scalars £i, £2 in S and elements Si 
and S2 in 5, %iSi+!;2s2 is in S. If C is a class of linear sets of ele­
ments of A, then the sum of these linear sets is defined as the 
least linear set containing all the linear sets of C. This is equiva­
lent to defining the sum as the totality of finite linear combina­
tions with scalar coefficients of the elements of the sets of C. 
The product SiS2 of two linear sets Si and S2 is the least linear 
set containing every element of the form S1S2, where si and s2 are 
in Si and S2 respectively. I have discussed elsewhere* other 
properties of linear sets. 

As in the case of finite algebras, an invariant proper sub-
algebra A1 of A is one for which both AiA and AAi are contained 
in Au The sum and intersection of a class of invariant sub-alge­
bras is an invariant sub-algebra (or zero) and the sum of two 
distinct maximal invariant sub-algebras is A. Moreover, we 
may define the sum of two or more algebras Ai, A2, • • • as a 
direct sum which we denote ^4i(+)^42( + ) • • • , or (S)-4»«, if for 
every iy^jy AiAj = AjAi = 0, and the intersection Ai AAj = 0. If 
A has a principal unit e and A = Ai(+)A2, then Ai has a princi­
pal unit 61, and A2 has a principal unit e2> where e = e\-\re%. We 
may prove, as in the finite case, the following theorem. 

THEOREM 1. If Ai and A2 are sub-algebras of A either of which 
has a principal unit, and if A\A2 = A2Ai = 0, then A\ f\A2 = 0 and 
Ai(-\-)A2 is a direct sum. 

THEOREM 2. If A has an invariant sub-algebra A iwhich possesses 
a principal unit e^ then A is reducible and has Ai f or one component. 

* M. H. Ingraham, A general theory of linear sets, Transactions of this So­
ciety, vol. 27 (1925), pp. 163-196. 
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J. H. M. Wedderburn, in his above mentioned paper, proves 
this theorem on the basis of a postulate which requires that 
for every linear set there exists a supplementary set such that the 
sum of the two is A and the intersection zero. His proof, how­
ever, makes no essential use of this hypothesis. The first real 
difference in this theory from that of finite algebras comes in 
attempting to generalize the following theorem.* 

A ny reducible finite algebra A with a principal unit e can be ex­
pressed as the direct sum of irreducible algebras each with a princi­
pal unit, in one way and only one way apart from the arrangement 
of the component algebras. 

This theorem is not true in the extended theory for there exist 
algebras of infinite order with principal units which are not ex­
pressible as the direct sum of irreducible algebras. Although the 
existence of a complete reduction of a reducible algebra can not 
be proved in general, it will be seen as an immediate corollary 
of Theorem 4 that the uniqueness, except for order of compo­
nents of any complete reduction into sub-algebras each with a 
principal unit, does hold in general. This situation is given by 
Theorems 3 and 4. 

THEOREM 3. If A can be expressed as the direct, sum of sub-alge­
bras in two ways A = (2)Ai=Ç%)Bi, such that AAi = AiA —Aa 
and BiA = ABi = Bi, then each Ai and Bi can be expressed as the 
direct sum of one or more sub-algebras Ai= (Z)Aij, Bi = (1>)Bij 
such that apart from order the Ai/s and the Bi/s are identical. 

THEOREM 4. If A has a principal unit, it can not be expressed as 
the direct sum of more than a finite number of sub-algebras. 

PROOF OF THEOREM 3. Let Aq — B^ equal the intersections of 
A i and Bj. 

Ai=AiA =2]AiBj. But AiBj is a portion of the intersection 
of Ai and Bj, and hence Ai — XjAij and, moreover, it is a direct 
sum since Aij is in B3- and for every j^k, BjBk^BkBj^O and 
{Bj A#*) = 0. Similarly, # / = ( 2 ) ^ . Hence A = (2)^4*= (S)Wi4< 
= (S)j(Bj) = (ZijBji), and apart from order, the An and the Bji 
are identical. Moreover, it should be noted that Ai3=AiBj 
= BjAi. 

* Dickson, Algebras and their Arithmetics, p. 35. 
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COROLLARY. If an algebra A can be reduced to the direct sum of 
irreducible algebras A it each A i having the property that A iA =AA » 
= -4», this reduction is, apart from order, unique. 

I t is obvious that AAi=AiA=Ai if Ai contains a principal 
unit. Hence reduction of an algebra to irreducible subalgebras 
each with a principal unit is unique. 

In order to prove Theorem 4, consider A = (2)At and contain­
ing a principal unit e. The principal unit e can be expressed 
uniquely as a sum of a finite number of elements not more than 
one of which belongs to any Ai. Then e =]Ca*> where, except for 
a finite number of values of i, a» = 0 if Aj is such that a ; = 0; 
then Aj = eAj=0, and the theorem follows at once. 

The following three examples somewhat clarify the situation. 
Example 1 is an algebra which, although it contains no principal 
unit, is the direct sum of an infinite number of irreducible sub-
algebras each with a principal unit and hence, by the corollary 
to Theorem 4, is uniquely reducible. Example 2 is an algebra 
with a principal unit containing Example 1 and its invariant 
sub-algebras as invariant sub-algebras, and hence by Theorem 4 
is not reducible to the direct sum of irreducible sub-algebras. Ex­
ample 3 is the most interesting of the group, being an algebra 
such that every invariant sub-algebra contains a proper inva­
riant sub-algebra with a principal unit, and hence is reducible. 
All of these algebras contain denumerable finitely linearly inde­
pendent bases and hence we do not believe that any simple 
postulates as to bases for the infinite algebras will yield ap­
preciably greater results in this portion of the theory. Although 
all the examples are commutative, non-commutative examples 
can easily be built up as the direct product of these and finite 
non-commutative division algebras. 

EXAMPLE 1. Let A = [all sequences {£*} of scalars which are 
zero except for a finite number of elements]. Let addition, mul­
tiplication be the addition and multiplication of corresponding 
elements, and scalar multiplication the multiplication of each 
element by the given scalar. Let Ai be all the sequences for 
which £, = 0, (i^j). Then A = (2)Ai. 

EXAMPLE 2. Let A = [all sequences {£*} of scalars such that 
£i = £;+i except for a finite set of values for i]. Let addition, 
multiplication, and scalar multiplication be defined as above. 
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Each Ai of Example 1 is an invariant sub-algebra of A but A ?* 
(2 )4 «. 

EXAMPLE 3. Consider uo=*ui+vi, where 

UQ2 =UQ, U£ =UI, Vj* =Vi, 

In a recursive manner, let 

Ui = U2 + V2, Vi = Us + Vs, 

where the table of multiplication for ui, u2, v2 can be gotten from 
that for «o, #i and Vi by replacing u0 by Ui, U\ by u2, v\ by ẑ , and 
the multiplication table for vi, uz and vz can be gotten in a simi­
lar manner by replacing UQ by vi, u\ by «3, and vi by ^3. In a simi­
lar manner, express each of u2, v2, us and Vz as sums of a pair of 
elements, etc. If we call u± and v\ direct descendents of wo, ^2 
and v2 direct descendents of U\ and descendents of «0» etc., the 
table of multiplication can be stated in the following geneolo-
gical fashion. Each u or v is idempotent. An element times its 
descendent is the descendent; an element times any brother or 
cousin no matter how far removed is zero. I t is also clear that 
the u's form a base for the total algebra. Moreover, if any v or 
u is in an invariant sub-algebra A\ of A, it and all its descen­
dents form a base for an invariant sub-algebra A2 0ÎA1 and A of 
which it is the principal unit. Suppose then Ay. contains an ele­
ment a± =y^Li&#»-. Let un be a u in the lowest generation repre­
sented in ai. Then a\Un = ÇTJl!;i)un. If J ^ Î & T ^ O , A\ contains un. If 
^C?£i = Oand if ze> is the direct ancestor of un, then a\W =X)ï"" *£»«;+ 
£n^n = — £nZ>n and -4i contains s/n, hence A\ contains either un or 
vni and hence each of their descendents and hence a proper in­
variant sub-algebra with a principal unit. 
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