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ON T H E INTEGRATION OF UNBOUNDED 
FUNCTIONS* 

BY W. M. WHYBURN 

1. Introduction. The author has shown f that F. Riesz' treat­
ment of intégration} leads in every case to the Lebesgue inte­
gral. This demonstration makes possible a complete develop­
ment of the theory of Lebesgue integration from the Riesz point 
of view.§ Such a development offers a number of advantages 
over the usual treatment and is especially desirable when one 
wishes to build a Lebesgue theory on a previous treatment of the 
Riemann integral. The purpose of the present paper is to empha­
size further the importance of the Riesz point of view in a 
treatment of the general subject of integration by establishing 
additional relations between sequences of simple functions and 
functions that are summable in the senses of Lebesgue, Har-
nack, Denjoy, Denjoy-Khintchine-Young, and Young. The 
terminology and notation of Riesz' paper|| are used. 

2. Preliminary Definitions and Theorems. In this section we 
give a number of definitions and theorems which are well known 
but which are essential for the development of later theorems. 

Simple function.^ A function <f>{x) is said to be a simple func­
tion on X: a^xSb, if there exist n + 1 points: Xo = a<Xi<x2 

< - • -<xn = b, such that </>(#) =<^, a constant,onIi'.Xi<x<#»+i. 
Null set. A set of points K is said to be of measure zero if 

for each e>0 , there exists an at most countably infinite set of 
intervals such that each point of K is an interior point of some 
one of these intervals and the sum of the lengths of the intervals 

* Presented to the Society, November 28, 1931. 
t This Bulletin, vol. 37(1931), pp. 561-564. 
Î Acta Mathematica, vol. 42(1920), pp. 191-205. 
§ This point of view is essentially that used in the ordinary treatment of 

the Riemann integral. 
|| Loc. cit. We work entirely in the real domain. 
If These functions have also been called horizontal or step functions. In this 

connection see Ettlinger, American Journal of Mathematics, vol. 48 (1926), pp. 
215-222. 
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is less than e. Such a set of points is called a null set, and a prop­
erty which holds everywhere on an interval X with the excep­
tion of points of a null set is said to hold almost everywhere on X, 
or is said to hold on X0. 

Integral of a simple function. By Jl
a<j>{x)dx, where <j>{x) is a 

simple function on X, we mean ^*»o<£*Ai, where Ai = Xi+i — Xi is 
the length of Ii. 

THEOREM 1. If f(x) is the limit function on X0 of a uniformly 
bounded sequence [0W(#)] of simple f unctions, then 

limn ̂ Jh
a<t>n{x)dx 

exists, and furthermore this limit is the same for all uniformly 
bounded sequences of simple f unctions which approach f (x) on XQ. 

Theorem 1 was proved by F. Riesz.* He used the limit whose 
existence is asserted in this theorem as a definition of fb

af(x)dx. 
The author has established f the following theorem which shows 
that Riesz' integral is identical with the Lebesgue integral. 

THEOREM 2. A necessary and sufficient condition that a bounded 
function be measurable is that it be the limit function on X0 of a 
uniformly bounded sequence of simple f unctions. 

Riesz established J the following theorem. 

THEOREM 3. A necessary and sufficient condition that a bounded 
function f(x) be Riemann integrable on X is that there exist a se­
quence [</>n(#)] of simple functions which approaches f {x) uni­
formly almost everywhere on X, that is, uniformly in the neighbor­
hoods of all points on XQ. 

Measure of a set of points. Let K be a set of points on the inter­
val X and let f(x) = 1 at points of K and f(x) = 0 on X — K. If 
faf(x)dx exists§ the point set K is said to be measurable and its 
measure m{K) is defined as the value of Jb

af{x)dx. 

3. Unbounded Functions. We now consider functions which 
may be unbounded on their interval of definition X: a^x^b. 

* Loc. cit., p. 196. 
f W. M. Whyburn, loc. cit., pp. 561 and 564. 
t Loc. cit., p. 204. 
§ This is a Lebesgue integral but is defined by the Riesz method and hence 

uses the measure of null sets only in its definition. 
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THEOREM 4. A necessary and sufficient condition that a function 
f(x) be measurable on X is that there exist a sequence of simple 
functions that approaches f(x) on X0. 

PROOF. Necessity. Let f(x) be measurable and let Fi(x) =f(x) 
when | / ( x ) | ^ i , Fi(x)=i when f(x)>i} and Fi(x) = —i when 
\f(x) | < —i. The bounded functions Fi(x), (i = l, 2, • • • ), are 

measurable and hence by Theorem 2 there exist sequences 
[<£in(#)] of simple functions which approach these functions on 
X0. By EgerofFs theorem* the sequence [<t>in(x) ] approaches Fi{x) 
uniformly on X except for a set of arbitrarily small measure. For 
each i choose an index Ni so that \(j>iNi(x) — Fi(x) | <( l /2*) ex­
cept on a set Ei of measure less than 1/2*. Let <)>i(x) = (l>iNi(x)f 

(i = 1, 2, 3, • • • ). We prove that [<l>i(x) ] is a sequence which ap­
proaches ƒ (x) on X0. Let E be the subset of X on which [4>i(x) ] 
does not approach ƒ (x). If E is of positive measure, we can de­
termine a number j such that the subset D of E on which 
|/0*0 | Sj is of positive measure c (otherwise E would consist of 

an at most countably infinite set of null sets and would there­
fore be of measure zero). Let j be chosen and then choose n>j 
such that l / 2 w <c /4 . We have | 0 n + r ( * ) - Fn+r(x) | < l / ( 2 w + r ) ex­
cept on a set of measure less than l / (2 n + r ) , (V=l, 2, • • •)• At 
each point of D, Fn+r(x)=f(x), and hence with the possible 
exception of a subset of measure less than ^2?=il/(2n+r) <c/2, 
we have |0»+r(*)—ƒ(*) | < l / ( 2 n + r ) , 0 = 1, 2, • • -),onD. Hence 
l i m ^ c / ^ x ) =f(x) on a subset of D of measure c/2 which contra­
dicts the assumption that this limit does not hold at any point 
of D. This completes the proof of the necessity. 

Sufficiency. Let [0n(*O] D e a sequence of simple functions 
which approaches ƒ(x) on X0 and let Mi and ikf2, Afi<ikf2, be 
any two constants. Let E be the subset of X on which M\ ^f(x) 
^ M2. Let F(x) =ƒ(*) when Mi-1 £ƒ(*) ^ M2+1, F(*) = i t f i - 1 
when / 0 ) < i k f i - l , JP(x) = ikf2+l when / ( ^ ) > M 2 + 1 . Let 
6i(x) = (j>i(x) when 0*(#) lies between Mi — 1 and M"2+l, 
fl<(x) = Af1—1 when <t>i(x)^Mi — l9 6i(x) = M2+l when 0*(a) 
^M2+l. Now [#;(#)] is a uniformly bounded sequence of sim­
ple functions which approaches the bounded function F{x) on 
X0. Hence by Theorem 2, F(x) is measurable on X and the set 
of points for which Mi ^ F(x) ^ M2 is measurable. This set, how-

* See Hobson, Functions o f a Real Variable, vol. 2, p. 140. 
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ever, is the set E and hence E is measurable. It follows from 
this that ƒ (x) is measurable on X. 

Definition of property B. A sequence [<£n(#)] of simple func­
tions is said to have property B if for each e>0 , there exists a 
number M€ such that if I(n> e) denotes the set of intervals on 
which \<t>n(x) \>M€t then /z(w,o \(j>n(x) \dx<e, (w = l, 2, • • • ), 
where fi(n,e) \<f>n(x) \dx means the sum of the integrals of |0n(#) | 
on the separate intervals of I(n, e). 

THEOREM 5. If [(j>n(x)} is a sequence of simple f unctions which 
has property B and which is such that l ining <j>n(x) exists on X0, 
then l ining Jh

a<t>n{x)dx exists. 

PROOF. Let e = l. We know that \Jh
a(j>n{x)dx | g Mi(b — a) 

+//(n,i) \<t>n(x) \dx<Mx(b — a) + l for all n. The set of numbers 
Kn = Ja4>n(x)dx is therefore bounded. Hence there is at least one 
number K which either is identical with infinitely many of the 
numbers Kn or is the limit of a subsequence of [Kn]. In either 
case we may pick out a sequence [6i(x) ] of simple functions from 
the sequence [<£n(a0] in such a way that [0;(x)] approaches the 
same limit function/(x) as [0n(#)L n a s property J3, and is such 
that limi^QOdi(x)dx exists. 

LEMMA. If [hn(x) ] and [gn(x) ] are two sequences of simple func­
tions which approach f (x) on XQ and which have property B, then 
if limnH>00 fahn(x)dx and Umn^00J

b
agn(x)dx exist, these limits are 

equal. 
PROOF OF LEMMA. Let us suppose that \imn+0Qfb

ahn(x)dx = H, 
limn^O0f

b
agn(x)dx = G, and let ?7 = 7e>0 be arbitrarily assigned. 

Choose Ni so that for all n>N% 

< €. I hn(x)dx — H < e, f gn(x)dx — G 
va I \ *J a 

Let M be the larger of the two numbers Me for [ÂW(#)] and 
kn(#)] by property B. Let J(n, e) and J'(n, e), respectively, 
be the sets of intervals on which \gn(x) \ >M and \hn(x)\>M. 
Hence 

I | gn{x) | dx < €, I | hn(x) I dx<€, (^=1 ,2 , • • • ) . 

Let Gn(x) = gn(x) when \gn(x) | ̂  M, Gn(x) = M when gn{x) > M, 
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Gn(x)=— M when gn{x)<—M\ and let Hn(x)~hn(x) when 
\hn(x)\^M, Hn(x) = M when hn(x)>M, Hn(x)=—M when 

hn(x)<— M. It follows immediately that [ \Gn(x)—Hn(x) |] is 
a sequence of uniformly bounded simple functions that ap­
proaches zero on X0. By Theorems 1 and 2 we may choose an 

or all n > N index N, N>NU such that 

(4) 

We have 
ƒ Gn{x\ — Hn(x) \ dx < e. 

J, 6 

a 

^ + | gn(x) | ]d#, 

hn(x)dx 
a 

M + | hn{x) | ]d#. 

*/a t /J (n ,c ) 

g f G.(*)d* + f 

J Hn(x)dx — I 
a */J'(n,€) 

^ f Hn(x)dx + f 
Ja Jj'(n,c) 

Since I f < |gn(#) | on /(/z, e) and M< \hn(x) | on J'(n} e), we 
have 

/» b s*b ,% b 

(2) I Gn{x)dx - 2e < I gn(x)dx < I Gn{x)dx + 2e, 
J a J a J a 

J
»& •»& •» b 

Hn(x)dx - 2e < I hn(x)dx < I Hn(x)dx + 2e. 
a J a J a 

If we combine (2) and (3) and make use of (4), we obtain 

I gn{x)dx — I hn(x)dx 
%) a J a | 

< I [Gn(x) - Hn(x)]dx 

A combination of (5) with (1) yields \G-H\<7e, for all n>N. 
Since rj = 7e was arbitrarily chosen, it follows that G = H. 

PROOF OF THEOREM 5. If l i m , ^ Jb
a4>n(x)dx is not X", we may 

pick a subsequence [g,(x)] from [0»(#)] which approaches ƒ(x) 

+ 4e < 5e, forw > iV. 
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on Xo, has property B, and is such that lim,-.*» Jlgj{x)dx exists 
and is different from K. But by the lemma, Jlgj{x)dx must ap­
proach the same limit as Jh

adi{x)dx. It follows from this that 
l ining fb

a<f>n{x)dx exists. 

COROLLARY. If [gn(x)] and [hn{x)] are any two sequences of 
simple functions that approach f{x) on X0 and that have property 
B, then l ining Jlgn{x)dx and l ining fh

ahn{x)dx exist and these 
limits are equal. 

THEOREM 6. A necessary and sufficient condition that a function 
f(x) be summable {in the sense of Lebesgué) is that there exist a 
sequence [</>n(#)] of simple f unctions which approaches f {x) on X0 

and which has property B. 

Proof of sufficiency. This may be proved directly or we may 
obtain it as a consequence of a theorem due to de la Vallée 
Poussin.* We note that the absolute continuity of the integrals 
J(f>n{x)dx1 {n — 1, 2, • • • ), is uniform, f since for a given e > 0 we 
may choose ô = e/[2ikfe/2], and S is independent of n. I t follows 
then from de la Vallée Poussin's theorem that f{x) is summable 
o n X . 

Proof of necessity. Let f{x) be summable on X and let X be 
subdivided into n equal parts by the points X\y X2y , vV/l—1» 

L e t x 0 = a a n d xn = b. On IiiXi^x<Xi+i, let<f>n{x):= fli^f{x)dx/Ail 

(i = 0, • • • , n—l), where Ai = Xi+i~Xi. I t followsj from the ab­
solute continuity of ff{x)dx that limnH>00 4>n{x) =f{x) on X0. I t re­
mains to show that [0n(#)] has property B. Let g{x) = \f{x) |, 
hn{x)=fxj+lg{x)dx/Ai on Iu (i = 0, 1, • • • , » —1). Let e > 0 be 
assigned and let ô > 0 be chosen so that f(e)g{t)dt<e, when e is 
a measurable subset of X such that w ( e ) ^ S . The existence of S 
follows from the absolute continuity of jtg{i)dt. Let gj{x) =g{x) 
when \g{x) \^j, gj{x)=j when g{x)>j. The integral Jb

agj{x)dx 
is an increasing function of j and has J\g{x)dx as its limit as j 
becomes infinite. Choose / so that for all j ^ / , Jh

ag{x)dx 
— fagi{%)dx<e. Let k denote the subset of X on which g{x) >J 
and let ki denote the subset of k that lies on 7t-. We have 
hk)g{x)dx =J2l^of(ki)g{x)dx < e. Now 

* Transactions of this Society, vol. 16 (1915), p. 445. 
t For definition, see de la Vallée Poussin, loc. cit. p. 445. 
t See W. M. Whyburn, loc. cit., p. 562, for a detailed proof of this. 
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*»(*) = Uilt-ki)g(x)dx + f(ki)g(x)dx]/Ai 

^ J + f(ki)g(x)dx/Ai, on /,-. 

Let M€ = J+e/8. In order that hn(x) be greater than Me on /» 
it is necessary that f(ki)g(x)dx/Ai be greater than e/8 and hence 
A»- be less than [V€]/<fy)gO*0^#« From this it follows that the 
sum I'(n, e) of intervals on which hn(x)>M€ is of measure 
less than Y^l=o[a/e]fiki)g(x)dx<eo/eS S. Hence finn,*)g(x)dx 
==fi,(n,€)hn(x)dx<e. Since \<i>n(x)\Shn(x), it follows that the 
set I(n, e) of intervals on which \4>n(x) \>M€ is a subset of 
/'(^> €) and that / j ( n , €) |0n(ff) \dx is less than e for all n. This 
proves that [0n(#)] has property B. 

THEOREM 7. If f{x) is summable on X and if \<t>n(x)\ is any 
sequence of simple functions which has prpperty B and which ap­
proaches f (x) on X0, then limnH(00 fh

a4>n{x)dx exists and is equal 
to Jbaf(x)dx. 

PROOF. This theorem follows immediately from Theorem 5 
and a theorem of de la Vallée Poussin.* 

A theorem of de la Vallée Poussinf enables us to state Theo­
rem 6 in the following form. 

THEOREM 8. A necessary and sufficient condition that a function 
f{x) be summable on X: a^x^b, is that there exist a sequence 
[<t>n{x) ] of simple functions that approaches f (x) on X0 and is such 
that the absolute continuity of the indefinite integrals of these sim­
ple f unctions is uniform. 

We may now state and prove the following theorems which 
apply when the integrals are taken in senses that are more gen­
eral than that of Lebesgue. Let ƒ (x) be a function on X : a g x ^ b, 
and let any definition of the integral of f(x) be given which exists 
for f(x) and which has the further property that if J(a, b) de­
notes this integral and c, d, e are any three points of X, then 
J(c, d), J(c, e), J(e, d) exist and J(c, d) =J(c, e) + J(e, d). 

* Loc. cit., p. 446, Theorem 2. We note that the proof of Theorem V 
might be shortened by the use of de la Vallée Poussin's theorems. It seems de­
sirable, however, to give this proof from the Riesz point of view in order that 
the theorem be available for use in a treatment of Lebesgue integration by 
the Riesz approach. 

t Loc. cit., p. 450. 
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THEOREM 9. Let E be an everywhere dense set of points on X 
and let M denote the subset of X which has the property that if p 
is any point of M, then l im^p J(p, q)/iq — p) exists and equals 
F(p), where q ranges on the set E. There exists a sequence \<j>n{pc)\ 
of simple functions such that this sequence converges to F{x) at 
each point of M and Jb

a4>n{x)dx = J (a, b) for n = l, 2, • • • . 

PROOF. Let a method of subdivision of X be chosen in such a 
way that all of the subdivision points belong to E and the length 
of the maximum subdivision approaches zero as the number of 
these subdivisions becomes infinite. Let the points of subdivi­
sion, in order of increasing magnitude, for the nth stage of the 
subdivision be Xo = a, xi, Xi, • • - , xn = b. On Ii\ Xi^x<x%+u let 
<t>n(x)=J(xi, Xi+i)/(xi+i — Xi), (i = 0, 1, • • • , w—1). Consider 
[<f>n(x)]>(n=l,2, - • • )• Let p be any point of M, and for each n 
let IPn: pn^x<qn be the subdivision that contains p. Now 

<l>n(p)=J(pn, qn)/(qn-pn) 

= [J(pn, P)+AP, ün)]/(qn-pn)=J(pn, P)/iP~Pn) 

+ [J(P, qn)/(ün-p)-J(pn, P) I\P'~P'») ] [(<Z« " P) I'((Z»" Pn)l 

We note that \{g,n — p)/{qn — pn)\^\ while its coefl&cient has 
zero for its limit (since both terms approach F(p)). Since 
lim^oo J(pn, p)/(p-pn) is F(p), we have limn^oo 4>niP)-F{p). 
In case p is a point of subdivision,* we replace the indeterminate 
ratio in the above formula for <j>n(p) by the limit of this ratio 
(which is F(p)). Finally, we note that, for each n, 

fa<l>n(x)dx =Ysl=oJ(Xi, *<+l) = Jfa, &) 

COROLLARY 1. If E is identical with X, then M is the set of 
points at which J (a, x) has a derivative with respect to x. In particu­
lar, if this derivative is equal to f(x) at a point of M, then [</>n(x) ] 
converges to f(x) at this point. 

COROLLARY 2. If fix) is integrable in the sense of Harnack-
Lebesgue, Denjoy, or Lebesgue, the conditions of Theorem 9 are 
satisfied if E is any everywhere dense set on X and M is X0. Fur­
thermore, Fix) =ƒ(#) on XQ. 

COROLLARY 3. If fix) is integrable in the D enjoy-Khintchine-
Young sense and if X can be divided into a countable number of 

* We define <f>n(b) = 0n(#n-i). 



i932-] REFLECTIONS IN FUNCTION SPACE 131 

measurable sets in such a way that the indefinite integrals (in the 
D-K-Y sense) are absolutely continuous on each of these* then the 
conditions of Theorem 9 are satisfied when J (a, b) denotes the 
D-K-Y integral of ƒ(#), E is any everywhere dense set on X, M is 
X0, and F(x) =ƒ(#) on X0. 

It is a very simple matter to extend the results of the present 
paper to cases where the interval of definition X is replaced by 
any measurable point set E on X. The definition of f(x) is ex­
tended to points of X — E by letting ƒ (x) be zero at such points. 
The integral of f(x) on E is then described in terms of the in­
tegral of the extended function on X. One could define a simple 
function on a point set by saying that it is a function which 
takes on only a finite number of values on this set. This defini­
tion is not needed in the present adaptation. 

T H E UNIVERSITY OF CALIFORNIA AT L O S ANGELES 

REFLECTIONS IN FUNCTION SPACE t 

BY L. S. KENNISON 

1. Introduction. The purpose of this paper is to point out an 
error,J giving the corrected form of the incorrect theorem re­
ferred to below as Delsarte's theorem, also to prove a generali­
zation. However, the contribution made to the geometry of 
function space may be interesting to some on its own account. 

We shall consider only functions of one or two variables de­
fined on the interval (a, b) or the corresponding square. All such 
functions are to be bounded and integrable on the range of defi­
nition. We shall denote the continuous arguments on (a, b) by 
the letters x, s, t, u, written as subscripts or superscripts and 
shall imply integration on (a, b) with respect to any argument 
that occurs twice in the same term. 

* See Khintchine, Comptes Rendus, vol. 152 (1916), p. 290. 
t Presented to the Society, February 28, 1931. 
t See §3 below. 


