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SOLUTIONS OF BOUNDED VARIATION OF T H E 
FREDHOLM-STIELTJES INTEGRAL EQUATION* 

BY L. J. PARADISO 

The purpose of this note is to give conditions under which 
the Stieltjes integral equation 

y)d<t>{y) (1) <Kx) = f{x) + X f K(x, 
J a 

has a solution <f>(x) of bounded variation. 
In the first theorem conditions on f(x) and K(x, y) are given 

under which the method of successive substitutions yields a 
solution of bounded variation for a limited range of values of X. 

With further restrictions on K(x, y), it is shown in the second 
theorem that the Fredholm method applies and the solution of 
bounded variation thus obtained is valid for all values of X ex
cept for the characteristic values. 

Finally, an example is given to show that the more restrictive 
conditions on K(x, y) given in the second theorem are not suffi
cient to make the problem a special case of that treated by 
Riesz.f 

THEOREM 1. If 

(a) f(x) is of bounded variation, a^x^b, 
(b) K(x, y), defined and bounded on jR(a^x^&, atkySb), is 

continuous in y for each x and has a total variation in x for each 
y j Ticiy), which is a bounded f unction of y having the least upper 
bound TK and 

(c) | x | < i / r * , 

then the function <j>(x) defined by the series 

(2) fa) = f(x) + X f K(x, yi)df(yi) 
J a 

+ X2 f K(x, yi)d f K(yu yt)df(yt) + ••• 

is the unique solution of bounded variation of integral equation (1). 

* Presented to the Society, December 31, 1930. 
t F . Riesz, Über lineare Funktionalgleichungen, Acta Mathematica, vol. 41 

(1918), pp. 71-98. 
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This theorem is proved by the usual method of successive 
substitutions. Let the function \f/(x) be defined by 

*(*) = f K(x,y)df(y). 
J a 

Designate the total variations of f(x) and \p(x) by Tf and T^ re
spectively and let M^ \ K(x, y) | . Then we have 

| x/s(x) I ^ MTf and 7> ^ TV Tf. 

With the use of these inequalities it is found that series (2) 
obtained from equation (1) by repeated substitution converges 
absolutely and uniformly in x for all values of X satisfying the 
inequality |X| < 1 / 7 V The function thus defined, </>(#), is found 
by substitution to satisfy equation (1). That it is the unique 
solution follows as a consequence of the fact that the method of 
successive substitutions when applied to the homogeneous 
equation 

<$>(x) = X f K(x, y)My) 
J a 

yields as its only solution <£(#) = 0 . 
THEOREM 2. If f(x) is of bounded variation in the interval 

(a, b) and K{x, y) together with dK(x, y)/dx are continuous f unc
tions of x and y in R, then there exists a unique solution </>(x) of 
bounded variation of equation (1) for all values of X except for 
the characteristic values. 

This theorem can be proved by applying Fredholm's method 
to equation (1). However, we shall employ the following trans
formation* which reduces the problem to the solution of a 
Riemann integral equation. Let 6(x) =cf)(x) — f(x). Then equation 
(1) becomes 

(3) 6{x) =\ f K(x, y)df(y) + X f K(x, y)dd(y). 
Ja J a 

I t is easily verified, with the given hypotheses on the func
tions involved, that each term of the right hand side of equation 
(3) is a continuous function of x and possesses a continuous 

* J. D. Tamarkin suggested to me the possibility of transforming equation 
(1) into a Riemann integral equation. 
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derivative. Hence on placing \fl K(x, y)df(y) =F(y), we obtain 
from equation (3) by differentiation 

(4) 6'{x) = F'{x) + X f —K(x, y)0'(y)dy. 
J a OX 

The function F'(x) is continuous, and, moreover, by hypothesis 
dK(x, y)/dx is continuous in x and y. Hence the Riemann integral 
equation (4) has a unique continuous solution d'(x) for all 
values of X except for the characteristic values. The unique 
solution of bounded variation <j>(x) of equation (1) can thus be 
found. 

An example. Let ||/(| denote the maximum of the absolute 
value of the continuous function ƒ(x) in (a, b). One of the con
ditions on the transformation 

T\f]= f K(x, y)df(y) 
J a 

as given by F. Riesz* is that there exists a constant M such 
that for all continuous functions ƒ (x) 

(5) | | r [ / ] | | = g M | | / | | . 

The function K(x, y) defined in the following example satis
fies the conditions of Theorem 2 whereas inequality (5) given 
by Riesz is not satisfied by the transformation T[f]. We define 
K(x, y) to be a function of one variable, thus: 

K(x, 0) = 0, K(x, y) = y sin (ir/y), (0 < y g l ) . 

We next define a sequence of continuous functions fn(y) bounded 
in n and y. The wth member of this sequence is a function whose 
graph consists of a series of broken lines. These lines have a 
slope equal to zero in the interval (0, l/(w + l)) , while in the in
terval (l/(w + l ) , 1) they have a negative slope where the f unc
tion y sin (ir/y) is negative and a positive slope where this 
function is positive. Let §t- denote 1 or 0 according as i is odd or 
even. Then 

fn(y) = (~ l)kk(k+l)y+ (-l)^k + ôky 

l / (* + 1) ^ y ^ ! / * , ( * = 1 , 2 , . . . , » ) , 

* F . Riesz, loc. cit., p. 72. 
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and 

ƒ.(?) = *», ( 0 £ y £ l / ( » + l ) ) . 

From this definition we have 

dfn(y) 
(6) _ZA^Z = ( _ iyk{k + i)t 

ay 

(l/(k + 1) < y < 1/k, k = 1, 2, • • • , n), 

= 0, (0 < y < l / (» + 1)). 

The transformation 

T[fn] = f y sin (T/y)dMy), (n = 1, 2,- • • ), 

becomes from the definition oîfn(y) and from (6) 

T[fn] = £ f y s i n ( T / y ) ( - l ) * A ( É + l ) d y 

= £ * ( * + 1) f ( - l)*y sin (T/y)rfy. 
&=1 */l/(fc+l) 

The Pi/lk+tfy sin(x/y) dy is in absolute value greater than the 
area of the triangle whose vertices are at ( l / (£ + l ) , 0), (1/k, 0), 
[2/(2* + l ) , ( - l ) f c 2 / ( 2 £ + l ) ] . Since the area of this triangle is 
l/[Jfe(* + l)(2* + l ) ] , w e h a v e 

( - l) fcysin(7r/y)Jy > l/[k(k + l)(2fe + 1)]. 
i/CM-i) 

Consequently we get from (7) 

T[fn] > f > ( * + l)/[k(k + 1)(2* + 1)] = f f l / ( 2 * + 1), 

from which it follows that T[fn] becomes infinite with n. Hence 
condition (5) is not satisfied and equation (1) is not a special 
case of that treated by F. Riesz. 
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