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SOLUTIONS OF BOUNDED VARIATION OF THE
FREDHOLM-STIELTJES INTEGRAL EQUATION*

BY L. J. PARADISO

The purpose of this note is to give conditions under which
the Stieltjes integral equation

(1) 6(2) = f(x) + f K(x, 9)d(y)

has a solution ¢ (x) of bounded variation.

In the first theorem conditions on f(x) and K(x, y) are given
under which the method of successive substitutions yields a
solution of bounded variation for a limited range of values of \.

With further restrictions on K (x, y), it is shown in the second
theorem that the Fredholm method applies and the solution of
bounded variation thus obtained is valid for all values of N\ ex-
cept for the characteristic values.

Finally, an example is given to show that the more restrictive
conditions on K (x, v) given in the second theorem are not suffi-
cient to make the problem a special case of that treated by
Riesz.T

THEOREM 1. If

(a) f(x) is of bounded variation, a <x <b,
(b) K(x, v), defined and bounded on R(a<x=<b, a<y=<b), is
continuous in vy for each x and has a total variation in x for each

v, Tx(v), which is a bounded function of y having the least upper
bound Tk and

(C) ] A l < l/TK,
then the function ¢(x) defined by the series

_ b
(@) 8 = £+ [ K 2

+ 2 [ K, 3 [ &Gy s + -+

is the unique solution of bounded variation of integral equation (1).

* Presented to the Society, December 31, 1930.

t F. Riesz, Uber lineare Funktionalgleichungen, Acta Mathematica, vol. 41
(1918), pp. 71-98.
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This theorem is proved by the usual method of successive
substitutions. Let the function ¢¥(x) be defined by

0@ = [ K 0).

Designate the total variations of f(x) and ¢(x) by Tyand T re-
spectively and let M/ = ]K (x, y)] . Then we have

|¥(2) | £ MT; and Ty < Tk Ty.

With the use of these inequalities it is found that series (2)
obtained from equation (1) by repeated substitution converges
absolutely and uniformly in x for all values of N satisfying the
inequality |\| <1/T%. The function thus defined, ¢(x), is found
by substitution to satisfy equation (1). That it is the unique
solution follows as a consequence of the fact that the method of
successive substitutions when applied to the homogeneous
equation

o) = [ KG, 2is0)

yields as its only solution ¢ (x) =0.

THEOREM 2. If f(x) is of bounded variation in the interval
(a, b) and K(x, v) together with 0K (x,y)/dx are continuous func-
tions of x and vy in R, then there exists a unique solution ¢(x) of
bounded variation of equation (1) for all values of N except for
the characteristic values.

This theorem can be proved by applying Fredholm’s method
to equation (1). However, we shall employ the following trans-
formation* which reduces the problem to the solution of a
Riemann integral equation. Let 0(x) = ¢(x) —f(x). Then equation
(1) becomes

3)  6(x) = f K(, 9)df(3) + A f K(x, )do(3).

It is easily verified, with the given hypotheses on the func-
tions involved, that each term of the right hand side of equation
(3) is a continuous function of x and possesses a continuous

* J. D. Tamarkin suggested to me the possibility of transforming equation
(1) into a Riemann integral equation.
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derivative. Hence on placing Nf? K (x, ¥)df(v) = F(y), we obtain
from equation (3) by differentiation

LI
(4) 0(2) = F'(2) + \ f K, )0 (5)dy.

The function F'(x) is continuous, and, moreover, by hypothesis
0K (x, y)/9x is continuous in x and y. Hence the Riemann integral
equation (4) has a unique continuous solution 6’(x) for all
values of N except for the characteristic values. The unique
solution of bounded variation ¢(x) of equation (1) can thus be
found.

An example. Let H fH denote the maximum of the absolute
value of the continuous function f(x) in (a, b). One of the con-
ditions on the transformation

Tl = [ K i)

as given by F. Riesz* is that there exists a constant M such
that for all continuous functions f(x)

(5) ITls]ll = M7l

The function K(x, y) defined in the following example satis-
fies the conditions of Theorem 2 whereas inequality (5) given
by Riesz is not satisfied by the transformation T'[f]. We define
K (x, ) to be a function of one variable, thus:

K(x,0) =0, K(x,y) = ysin(r/y), (0 <y =1).

We next define a sequence of continuous functions f.(y) bounded
in # and y. The nth member of this sequence is a function whose
graph consists of a series of broken lines. These lines have a
slope equal to zero in the interval (0, 1/(z-1)), while in the in-
terval (1/(n-1), 1) they have a negative slope where the func-
tion y sin (w/y) is negative and a positive slope where this
function is positive. Let §; denote 1 or 0 according as 7 is odd or
even. Then

() = (= D*k(k+ 1)y + (= 1)**k + 6,
1/(k+1)§y§1/k7(k=1’2)7”))

* F. Riesz, loc. cit., p. 72.
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and
Ja(y) = 6n, O=y=s1/(n+1).
From this definition we have
dfn
© LD+,
dy

(1/(k+1)<y<1/k’k=1,27"’;”):
=0, O<y<1/(n+1).

The transformation

Tlf.] = f ysin (x/9)dfa(y), (n =1, 2,0 +),

becomes from the definition of f,(y) and from (6)

k=n 1/k
] = > f ysin (x/9)(— 1)*k(k + 1)dy

k=1 / (k+1)
(7) k=n 1/k
= Y k(k+1) (= 1)*y sin (x/y)dy.
k=1 1/ (k+1)

The [{/t+1y sin(r/y) dy is in absolute value greater than the
area of the triangle whose vertices areat (1/(k-+1),0), (1/%,0),
[2/(2k4+1), (—1)¥2/(2k+1)]. Since the area of this triangle is
1/[k(E+1)(2k+1)], we have

1/k
[ (= vrysin @y > 1/16G + DR+ D]

/(k+1)

Consequently we get from (7)

k=n k=n

Tfa] > 2k + 1)/[R(E+ DQE+ D] = 251/2F + 1),

k=1

from which it follows that T'[f.] becomes infinite with #. Hence
condition (5) is not satisfied and equation (1) is not a special
case of that treated by F. Riesz.
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