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NOTE ON AN APPLICATION OF M E T R I C 
G E O M E T R Y TO D E T E R M I N A N T S 

BY L. M. BLUMENTHAL 

1. Introduction. This note refers to a previous paper* pub­
lished in this Bulletin. On page 754 of that paper, the following 
theorem is stated. 

THEOREM. If the symmetric determinant 
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with ?%7>0, (i, j= 1, 2, 3, 4), i^j, is different from zero, and the 
complementary minors of four of the elements in the principal 
diagonal vanish, then the complementary minor of the remaining 
element does not vanish. 

In order to prove this theorem, two cases, A and B, were 
considered. In Case A it was supposed that all four of the bor­
dered complementary minors vanished. It was then shown that 
the fifth complementary minor (the unbordered minor that is 
the complementary minor of the element appearing in the 
first row and first column) did not vanish. 

In Case B it was assumed that three of the four bordered 
minors and the unbordered minor, denoted by £(£i, pi, pz, p<d, 
vanished. It was stated that Case B was exhausted by a study 
of two sub-cases, both of which were examined and found to 
contradict the hypotheses stated for Case B. It was concluded, 
then, that this case could not exist, and from this conclusion 
four interesting corollaries were stated. The principal interest 
of the paper seems to the writer to lie in these corollaries. 

A communication received from W. V. Parker called my at­
tention to the fact that the hypotheses explicitly made upon 

* This Bulletin, vol. 37 (1931), pp. 752-758. 
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the elements of the determinant D, while sufficient for the 
validity of the theorem, are not sufficient to prevent the possi­
bility of Case B occurring, and hence, the corollaries, dependent 
upon the impossibility of Case B for their correctness, are not 
true without an additional hypothesis upon D. This Parker 
showed by exhibiting a determinant which actually satisfied all 
the requirements stated, and which came under Case B. 

In the present paper we give a brief proof of the theorem with 
the conditions as stated in the original paper, in order to clear 
up any doubts that might exist about the validity of the theorem 
itself. Further, we make explicit the additional hypothesis upon 
the elements of the determinant D (implicit in the previous 
paper) and show in some detail that with this hypothesis the two 
cases examined under Case B are indeed the only two types that 
cannot be immediately rejected. These having been proved im­
possible, the corollaries are seen to be valid. Finally, the last 
part of this note is concerned with obtaining the only class of 
determinants, of which the one due to Parker is a special case, 
for which the Case B does exist. I t remains for me to express my 
thanks to him for his interest and his contribution. 

2. Proof of the Theorem. To prove the theorem itself, we con­
sider again the two cases A and B. The elements r^ having been 
replaced by (ij)2, where (ij) is a positive number which may be 
thought of as representing the distance between a point pi and a 
point pj of a quadruple pu P2, pz, p4, the assumption in Case A 
that all four bordered complementary minors vanish means, 
as stated in the previous paper, that all four of the triples of 
points contained in the four points pi, p2, pz, p± are linear. The 
determinant D being, by hypothesis, different from zero, the 
four points are not linear, and hence they form a pseudo-linear 
quadruple. (This is a result due to Karl Menger, explicit refer­
ence to which was given.) The determinant £>(pi, p2, pz, PA) 
formed for a pseudo-linear quadruple is shown to be different 
from zero, and the theorem is proved for this case. 

In Case B we suppose that the four complementary minors 
assumed to vanish consist of three of the bordered minors and 
the unbordered minor £(pi, p2, pz, Pu- We must then show 
that the remaining minor, a bordered one, does not vanish. 
This is immediate, for suppose that this minor vanishes. Then 
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all four of the bordered minors vanish, and hence the four points 
Pu p2, pz, PA are either linear or pseudo-linear. But, since the 
determinant £(pi, p2, pz, PA) is assumed to vanish, the points are 
not pseudo-linear, for, from Case A we have seen that the deter­
minant £>(pi, p2, pz, PA) formed for a pseudo-linear quadruple 
does not vanish. Therefore, the four points must be linear. But 
this is impossible, since the determinant D vanishes for a linear 
set of points, and, by hypothesis, the determinant D does not 
vanish. Hence, the assumption that the remaining minor van­
ishes is seen to lead to a contradiction, and the theorem is proved. 

3. The Triangular Inequality, We now state the hypothesis 
that is sufficient to prevent the existence of Case B. This hy­
pothesis is that the elements r^ = (ij)2 of D are such that each of 
the four triples pu p2, pz', pu p2, PA', pu Pz, PA) p2, pz, PA contained in 
the f our points pi, p2l pz, PA satisfy the triangular inequality* 
This geometric way of stating the condition is made use of be­
cause of its brevity; the condition may, of course, be stated in 
algebraic language. 

I t is now to be shown that with this condition adjoined to 
those made explicitly in the theorem, the Case B cannot exist. 
Since the theorem itself has been established, we know that in 
the Case B, the remaining complementary minor does not van­
ish. This is a bordered minor, and its non-vanishing means that 
the triple for which it is formed is not linear. We may assume 
the labelling so that this non-linear triple is pu P2, PA- The other 
three triples being linear (since their minors vanish) we have 

(123)(231)(312) = 0, (234)(342)(423) - 0, (341)(413)(134) = 0, 

where by the symbol ijk we mean ij+jk — ki, and the paren­
theses indicate multiplication. 

There are, then, 27 possible cases to examine, corresponding 
to the different ways in which the three bordered minors can 
vanish. An examination of these 27 cases yields the following 
results : 

Twelve of the cases result in the fourth triple pi, p2, PA being 
linear, and hence are to be rejected, since we have seen that this 

* Three points are said to satisfy the triangular inequality if their distances 
are such that the sum of any two is greater than or equal to the third. 
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triple is not linear, since the determinant formed for it does not 
vanish. 

Nine of the cases result in the fourth triple pi, pi, p\ not satis­
fying the triangular inequality, and are therefore to be rejected 
since we have supposed that all of the triples satisfy this in­
equality. 

Two of the combinations are to be rejected since they imply 
that the sum of three distances equals zero. 

This leaves four cases to be examined. These four cases are: 

/132 = 0, /123 = 0, /312 = 0, /231 = 0, 

(a) <M34 = 0, (b) ^234 = 0, (c) <342 = 0, (d) <423 = 0, 

V234 = 0, ^341 = 0, ' l34 = 0, U l 3 = 0. 

Case (a) is seen to reduce to sub-case alpha of Case B if we 
interchange the labels of p% and pi. Hence, it has been shown to 
be impossible. Case (b) is precisely the case treated in sub-case 
beta of Case B, and there shown to be impossible. Case (c) is 
merely another labelling of case (b) in which pi and p2 are inter­
changed. Case (d) is reduced to case (c) if the letters p2 and pi 
are interchanged. Hence these four cases are also impossible and 
the Case B cannot exist. Therefore, with the additional assump­
tion stated in this section, the corollaries of the theorem are 
valid. 

4. Possibility of Case B. We now obtain a class of determinants 
that may occur under Case B when we drop the assumption that 
each of the triples satisfies the triangular inequality. 

Consider the relations 312=0; 234 = 0; 413=0. If we put 
12 = a, 14 = £, 24 = &, we obtain, by substitution in the above 
three equations, 13 = (1/2) (-a + b-c), 23 = (l/2)(a + b-c), 
34 = ( l /2 ) ( — a + b+c). Since the distance (ij) is always posi­
tive, we have the positive numbers a, b, c satisfying the ine­
qualities a + b>c, b+c>a, b>a+c. I t will be observed that the 
triple pi, p2, PA does not satisfy the triangular inequality. Now, 
by hypothesis, the determinant £(pi, pi, p%, p±) vanishes. Sub­
stituting the values obtained above, and developing the determi­
nant, we obtain 

&(Pi, P*> P*> PA) = (1/16)(a + b + c)(a + b- c) 

•(a - b + c)(- a + b + c)z(2ab + 2ac + 2bc - a2 - b2 - c2). 
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Thus, it is seen, £(pi, £2, ps, pÀ) is zero if and only if 

a2 + b2 + c2 - 2{ab + ac + be) = 0, 

since the first four parentheses are seen not to vanish by virtue 
of the inequalities that a, b, c satisfy. 

Let us calculate the value of the determinant D formed for 
this case. It is found that 

D(ph p2, p3, pi) 

= - l ( - a3 - 2bz - 2cz + Sab2 + Sac2 + 2bc2 + 2b2c - 6abc)2, 

which may be written in the form 

D= - 1 [ - (a2 + b2 + c2- 2ab- 2ac- 2bc)(a + 2b + 2c) - \6abc}2, 

and, on account of the condition obtained by setting £ equal to 
zero, this becomes D = — 32a2b2c2. 

In order to see that this constitutes the only class of determi­
nants for which Case B exists, it is necessary and sufficient to 
examine each of the nine combinations referred to in §3 for 
which the fourth triple pi, p2, pi does not satisfy the triangular 
inequality. These nine combinations are 
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The first combination is the one just treated, and shown to 
exist. I t is seen at once that the second combination may be 
obtained from the first by interchanging the letters pi and p2; 
while the third is similarly obtained from the first by inter­
changing the labels of pi and p±. Hence these two combinations 
are equivalent to the first and do not require further treatment. 

(i) 

(4) 342 = 

(7) 
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I t will be found upon examination that the last six combina­
tions are equivalent to the fourth combination, being obtainable 
from this combination by suitable changes in the labelling of the 
points. I t will be sufficient, then, to examine combination (4). 

We have, writing 12= a, 14 = c, 24 = 6, and substituting in the 
relations (4), that 

13 = i(a + b + c), 23 = K - a + b + c), 

34 = £ ( - fl- b + c), 

the positive numbers a, b, c satisfying the inequality c>a + b. 
The determinant £(/>i, p2, p*, put which vanishes, by hypothe­
sis, takes the form, upon being developed, 

£(Pu i's, pz, PA) 

= (l/16)(a + b + c)2{- a + b + c)2(a + b - c)2 

• (a2 + b2 + c2 + lab + 2bc - lac). 

Now evidently none of the parentheses vanishes, and hence 
£(pi, p2, Pz, PA) is not zero, which contradicts the hypothesis. 
Hence, this case is not possible. 

Thus we have seen that if we assume the elements ra—{ij)2 

of the determinant D to be such that each triple of points satis­
fies the triangular inequality, then only Case A is possible, 
and the four corollaries, stated at the end of the paper about 
which this note is written, are valid. If we do not make this as­
sumption, then Case B can exist for only one type of combina­
tion, the one investigated in this paper. We notice that in either 
event, the value of the determinant is given by —32a2b2c2

f 

where a, b, c are positive numbers satisfying the appropriate 
conditions. 
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