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ON POLYNOMIAL INTERPOLATION TO ANALYTIC 
FUNCTIONS WITH SINGULARITIES* 

BY J. L. WALSH 

Méray has given f the following illustration to show that 
polynomials formed from a given function by interpolation do 
not necessarily converge to that function. Interpolate to the 
f unction ƒ (s) = 1/z by means of the polynomials pn(z) of respec
tive degreest w = l, 2, 3, • • • , required to coincide with ƒ (z) in 
the (n + l)th roots of unity; this condition defines the polyno
mials pn(z) uniquely. Moreover, we have 

(1) Pn{z) = Z\ 

because the equation pn(z) = 1/z is satisfied provided z is one of 
the (w + l ) th roots of unity. Even though the sequence pn(z) 
is defined by interpolation from the function f(z) = 1/z, the 
polynomials pn(z) do not approach the function ƒ(s) for \z \ < 1, 
as n becomes infinite, but approach the limit zero. I t is naturally 
not surprising that these polynomials should fail to approach 
f(z) for |z | < 1 , since ƒ(z) has a singularity in that region; this 
sequence of polynomials fails to approach the limit ƒ (z) even in 
a neighborhood of the curve \z | = 1 on which interpolation takes 
place. 

In this connection, it is worth while to recall Runge's result§ 
that if ƒ (z) is analytic for \z\ ^ 1, then the sequence of interpolat
ing polynomials pn(z) of respective degrees n which coincide with 
f(z) in the (n + l)th roots of unity converges to the limit ƒ(z) 
for | s | ^ 1 . 

* Presented to the Society, March 25, 1932. 
t Annales de l'École Normale Supérieure, (3), vol. 1 (1884), pp. 165-176. 

This illustration is also presented by Montel (after Méray), in his Séries de 
Polynômes} 1910, p. 51. 

J A polynomial of the form aoZn-\-aiZn~1-\r • • • -\-an is said to be of degree n. 
§ Theorie una Praxis der Reihen, 1904, p. 137. This method of Runge's 

has been more systematically developed by Fejér, Göttinger Nachrichten, 
1918, pp. 319-331, and by L. Kalmâr, Mathematikai es Physikai Lapok, 
1926, pp. 120-149, but only for interpolation in points on the boundary of a 
region of a function known to be analytic in that region. 
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Meray's illustration is of such simplicity, directness, and 
beauty, and apparently has stood alone for so long, that it 
seems worth while to furnish it with some companionship. The 
purpose of the present note is to provide such companionship by 
the proof of the following theorem. 

THEOREM 1. Let f(z) be an arbitrary function continuous for 
\z\ = 1 . Let the polynomials pn(z) of respective degrees n, (w = l, 
2, • • • ), be defined by the requirement of coinciding with f (z) in the 
{n-\-\)th roots of unity. Then the sequence pn(z) approaches the 
limit 

<2) ƒ.« - • f f(t)dt 

| 2 | = 1 t —Z 

for \z\ < 1 , uniformly for \z\ ^r<l. 

Lagrange's interpolation formula for the polynomial pn(z) 
of degree n which takes on the values Ki, K2, • • • , Kn+i at the 
tt + 1 distinct points zly s2, • • • , zn+i is 

£î Kk P{z) 
fe-i p'(zk) z - zk 

where p{z) = (z — Zi)(z — z2) • • • (z — zn+i); the polynomial pn(z) 
is uniquely determined by these requirements. Under the cir
cumstances of the theorem, we set zk = o)k, where o) = e27ri/(n+1), 
p(z) =zn+1 — 1. I t follows that we have 

n+l 03k(zn+l - 1) 

(3) Pn(z) = £ƒ(**) —J— J- ' 
k=1 (n+l)(z-œk) 

With the exception of the term zn+l in the numerator, which 
approaches zero, equation (3) suggests computation of the 
integral which appears in (2) by division of the circle C defined 
by \z\ — 1, at the points wk. We have 

1 «+1 ƒ(*>*)(a,*" - «*) 
(4) ƒ!(«) = Lm—-. ^ — , 

«-•« 2 x î t=, i CÜB — 2 

(5) lim [Mz) - pn{z)\ 
W-*oo 

r 1 zn+l - 1 "I ^ cofc(co - l)jf(«*) 
= lim 1 2-r 

«-+«> L27ri (n + l)(w ~ 1)J fc=i œk — z 
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By (4), the summation on the right-hand side approaches the 
limit 2irifi{z), which is continuous for \z \ < 1, and the limit is ap
proached uniformly for \z\ g r < l . * The quantity (n + l)(oo — l) 
approaches as its limit 2iri} for we have 

2TT t 2T 

co = cos h i sin > 
n + 1 n + 1 

2ic 2ir 
cos 1 sin 

0 + l ) ( c o - l ) n+1 n+1 
. = . 1 _, 

2ir% 2iri 2w 

n+1 n+1 
which approaches the limit unity. The square bracket in the 
right-hand member of (5) thus approaches zero for |z | < 1 , 
uniformly for | s | : § r < l , and the factor of this bracket is 
bounded uniformly in z and n, \z\ Sr<l, so the proof of our 
theorem is complete. 

The theorem and proof are obviously valid if the given func
tion ƒ(z) is not supposed continuous on C: \z\ = 1, but merely 
integrable in the sense of Riemann. 

The sequence pn(z) clearly converges uniformly in a region 
containing the curve C in its interior when and only when the 
given function f(z) or its analytic extension is analytic on and 
within C. The first part of this result was proved by Féjer (loc. 
cit.), or compare Walsh.f Reciprocally, if the sequence pn(z) 
converges uniformly for \z\ ^ p > l , we shall prove ƒ (z) analytic 
on and within C. The limit of the sequence pn(z) is analytic for 
\z | <p . The obvious equation pmKn+\){<^k) =f(uk), (m = l, 2, • • •)» 

where w = e27rî7(n+1), implies the convergence of the sequence 
pn(z) to the function f(z) at each point cofc, hence at a set of 
points everywhere dense on C. The continuity of f(z) for | z\ — 1 
and the analytic character of the limit of the sequence pn(z) for 
\z | <p then implies the identity on C of those two functions, 

hence the fact that f(z) or its analytic extension is analytic for 
\z I <p. If the sequence pn(z) converges uniformly for \z \ ^ 1 , 

the function ƒ(z) is analytic for | z | < l , and continuous for 

* Compare Runge, Acta Mathematica, vol. 6 (1885), pp. 229-244; Montel, 
loc. cit., p. 57; or Osgood, Funktionentheorie, 1928, pp. 579-581. 

t Transactions of this Society, vol. 34 (1932), pp. 22-74, §11. 
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The following result is a not uninteresting complement to the 
main theorem already proved. 

THEOREM 2. The function j\(z) which is the limit for \z\ < 1 of 
the sequence pn(z) of the interpolating polynomials for f {z) is also 
the limit for \z\ < 1, uniformly for \z\ ^ r < 1, of the sequence of 
polynomials Pn{z) of respective degrees n = 1, 2, • • • , of best ap
proximation tof(z) on Cin the sense of least squares. 

The polynomial Pn(z) is that polynomial of degree n for which 

f\f(z) - Pn(z)\2\dz\ 

is least. Such a polynomial is known to exist and be unique; 
it is defined* by 

Pn(z) = Co + Ciz + • • • + cnz
n, 

1 (* 1 {* dz 
Cn=~ \M**\dz\=— A*)—' 

2x Jc 2irt Jc zn+1 

We have the relation 

l rf{t)dt i f r i z z2 n 
/iw = —. rr---7--1/(0* T + ^ + ^ + -" • 

ZTTlJct — Z ZTTtJc L t t2 t3 J 

The infinite series converges uniformly in z and t for t on C, 
\z\ ^ r < 1, and hence may be integrated term by term. Thus we 
have from (6) fi(z) =c0-\-CiZ + c2z

2+ • • • , a series which is uni
formly convergent for | s | ^ f < l ; this includes the relation to 
be proved: 

jfi(«) = lim Pn(s), | 2 | < 1. 
n—»oo 

The polynomial Pw(s) is the sum of the first w + 1 terms of the 
Maclaurin development of jfi(z). 

Several particular cases are worth mentioning. If there exists 
a function analytic for \z\ < 1 , continuous for \z\ ^ 1 , which 
coincides with the given function ƒ (s) on C, then fi(z) naturally 
coincides with this function. If there exists a function F(z) analy
tic for | z\ > 1 (including the point s = oo ), continuous for \z\ ^ 1, 
which coincides with the given function f(z) on C, then each 
cn(n>0) vanishes, and we have 

* See for instance Kowalewski, Determinantentheorie, 1909, §137. 
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lim pn(z) = lim Pn(z) = cQ = F(oo), | z | < 1; 
»—> oo n—* oo 

here is included the case ƒ (z) = l/zk, k a positive integer (k = l is 
Meray's example), and we h a v e / i ( z ) = 0 . More generally, if 
on C the function f(z) can be expressed as f(z) ==fi(z)+f2(z), 
where fi(z) is analytic for \z\ < 1 , continuous for \z\ g l , and 
where f2(z) is analytic for \z\ > 1 including the point at infinity, 
is continuous for \z\ ^ 1, and vanishes at infinity, then we have 

lim pn(z) = lim Pn(z) = /i(z), | z | < 1, 
w—> oo n—> oo 

uniformly for |z | ^ r < 1 . If this function jfi(z) is analytic for 
\z\ < p > l , then we have 

lim Pn(z) = /i(z), | 2 | < p, uniformly for | z | g p' < p, 
W->oo 

no matter what ƒ2(2) may be, but we have 

lim pn{z) = /i(z), | z | < p, uniformly for | z | S pr < py 

if and only if /2(z) vanishes identically. 
Another illustration of the close connection between interpo

lation in the (w + l) th roots of unity and approximation on C in 
the sense of least squares has recently been indicated by the 
present writer (loc. cit.). 

If the function ƒ(z) is analytic for \z\ < T> 1, then for the poly
nomials pn(z) and Pn(z) already defined we have 

lim [pn(z) - Pn{z)} = 0, I z I < T\ uniformly for \ z | g R < T2 

n—»oo 

even though f {z) has singularities f or T^\z\ <T2. 

It is not to be supposed (compare Kalrnar, loc. cit.) that inter
polation in points arbitrarily chosen on C is always equivalent 
in the sense illustrated to approximation on C in the sense of 
least squares, even when the points of interpolation z^ for the 
interpolating polynomial pn(z) of degree n are such that the limit 
of the maximum distance between successive points z„ on C for 
a given n approaches zero with 1/n. We give an example to illus
trate this fact, where the n + 1 points of interpolation for the 
polynomial pn(z) are the roots of 



294 J. L. WALSH [April, 

(7) ( ) = 1, a>\. 
\a — z / 

These points of interpolation are thus the transforms in the z-
plane of the (w + l) th roots of unity in the w-plane, under the 
transformation 

1 — az 
(8) w = , 

a — z 
which leaves C invariant and transforms the interior and exterior 
of C respectively into the interior and exterior of C. I t is simpler 
to study the situation in the w-plane. We interpolate to the 
function f(z) = l/(w+T), 0 < T < 1 , in the points w, wn+1 = l, 
by rational functions pn(z) = Fn(w) of respective degrees (in z 
or w) n whose poles coincide in the points w — a. The reader can 
easily verify the formula 

pn{z) = Fn(w) 

_(T + aYiw^1 - 1) + [ ( - \)n + Tn+1](w - a)n 

[ ( - l ) n + Tn+1](w + T)(w - a)n 

the expression in terms of z is found from (8). I t appears from 
(9) that one may write 

1 (T + a)n(wn+l - 1) 

w + T [ ( - 1)» + Tn+l}(w + T)(w - a)n 

so that, for | w\ < 1, we have actual convergence when and only 
when the condition 

(10) T + a < | w - a\ 

is satisfied. Condition (10) is equivalent to the condition that w 
should lie exterior to a certain circle whose center is a and which 
cuts C:\w\ = 1 . Thus the sequence pn(z) converges in only a part 
of the unit circle \z\ g 1, and in that part converges to the origi
nal function l/(w+T). 

I t would be of interest to extend the main theorem of this 
note to the study of curves other than the unit circle; compare 
the references already given to Fejér and Kalmâr. 
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