# ON UNIT-ZERO BOOLEAN REPRESENTATIONS OF OPERATIONS AND RELATIONS* 

BY B. A. BERNSTEIN

1. Introduction. Consider an algebra $(K,+, \times)$, such as ordinary real algebra, in which there are two elements " 0 " and " 1 " having the properties that, for any element $a$,

$$
\begin{equation*}
a+0=0+a=a, a 1=1 a=a \tag{1}
\end{equation*}
$$

Let

$$
\left(x_{1}, x_{2}, \cdots, x_{m} ; a_{1}, a_{2}, \cdots, a_{m}\right)
$$

denote a unit-zero function with respect to the sequence of $m$ elements, $a_{1}, \cdots, a_{m}$ of $K$, that is, a function $f\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ of $m$ elements $x_{1}, x_{2}, \cdots, x_{m}$ such that $f=1$ or 0 , according as the equalities, $x_{i}=a_{i},(i=1,2, \cdots, m)$, all hold or do not all hold. Accordingly, ( $x ; a$ ) will denote a unit-zero function with respect to $a$, that is, a function $f(x)$ such that $f(x)=1$ or 0 , according as $x=a$ or $x \neq a$. Then the following propositions (2)-(4) evidently hold:
(2) $\left(x_{1}, x_{2}, \cdots, x_{m} ; a_{1}, a_{2}, \cdots, a_{m}\right)=\left(x_{1} ; a_{1}\right)\left(x_{2} ; a_{2}\right) \cdots\left(x_{m} ; a_{m}\right)$;

$$
\begin{equation*}
a\left(x_{1}, x_{2}, \cdots, x_{m} ; a_{1}, a_{2}, \cdots, a_{m}\right)=a \text { or } 0 \tag{3}
\end{equation*}
$$

according as $x_{i}=a_{i},(i=1,2, \cdots, m)$, all hold or do not all hold; (4) $a\left(x_{1}, x_{2}, \cdots, x_{m} ; a_{1}, a_{2}, \cdots, a_{m}\right)$

$$
+b\left(x_{1}, x_{2}, \cdots, x_{m} ; b_{1}, b_{2}, \cdots, b_{m}\right)=a \text {, or } b, \text { or } 0,
$$

according as $x_{i}=a_{i}$ all hold, or $x_{i}=b_{i}$ all hold, or neither $x_{i}=a_{i}$ all hold nor $x_{i}=b_{i}$ all hold, $\left(i=1,2, \cdots, m ; a_{i} \neq b_{i}\right.$ for some $\left.i\right)$. In a previous paper $\dagger$ propositions (1)-(4) were made the basis of a method of obtaining arithmetic representations of arbitrary operations and relations in a finite class of elements. Since

[^0]propositions (1)-(4) also hold when the symbols belong to Boolean algebra, the question naturally arises: To what extent can unit-zero functions be used analogously to obtain Boolean representations of arbitrary operations and relations? The object of the present paper is to answer this question.
2. Determination of Boolean Unit-Zero Algebras. The possibility of representing arbitrary operations and relations by unitzero functions of an algebra hinges on the existence in this algebra of a unit-zero function for every sequence of $m$ of its elements. Let us call an algebra which has a unit-zero function for every sequence of $m$ of its elements a unit-zero algebra. I proceed first to determine all Boolean unit-zero algebras.

This determination is made easy by noting at the outset that a unit-zero Boolean function must satisfy proposition (2) above and also that it must be single-valued. We therefore need to look only for Boolean unit-zero functions $f(x)$ of a single variable $x$ of the form*

$$
\begin{equation*}
(x ; a)=(1 ; a) x+(0 ; a) x^{\prime} \tag{5}
\end{equation*}
$$

From (5) we see, by putting $a=0,1$, that in a Boolean algebra of two elements, $x$ is the unit-zero function of $x$ with respect to 1 , and $x^{\prime}$ is the unit-zero function of $x$ with respect to 0 ; in symbols,

$$
\begin{equation*}
(x ; 1)=x,(x ; 0)=x^{\prime} . \tag{6}
\end{equation*}
$$

We have, then, that a two-element Boolean algebra is a unit-zero algebra, the unit-zero functions of one variable $x$ being given by (6).

By (2) and (6), all the unit-zero functions of a two-element Boolean algebra can be readily written down. Thus, the unitzero functions of two variables $x, y$ are given by

$$
\begin{align*}
& (x, y ; 1,1)=x y, \quad(x, y ; 1,0)=x y^{\prime} \\
& (x, y ; 0,1)=x^{\prime} y, \quad(x, y ; 0,0)=x^{\prime} y^{\prime} \tag{7}
\end{align*}
$$

In general, the unit-zero functions of $m$ variables are the $2^{m}$ constituents in the normal development of 1 with respect to the $m$ variables.

[^1]Let us now consider a Boolean algebra $A$ of more than two elements. $A$ must have an element $e \neq 0,1$. Suppose, first, that $A$ has a unit-zero function $f(x)$, of form (5), with respect to $e$. Then

$$
\begin{equation*}
f(e)=1, f(0)=0, f(1)=0, \quad(e \neq 0,1) \tag{i}
\end{equation*}
$$

But (i) is inconsistent with (5). Hence, our algebra $A$ has no unit-zero function with respect to a sequence containing the element e.

Suppose, next, that the algebra $A$ has a unit-zero function $f(x)$, of form (5) with respect to 0 . Then

$$
\begin{equation*}
f(0)=1, f(1)=0, f(e)=0, \quad(e \neq 0,1) \tag{ii}
\end{equation*}
$$

Hence, by (5),

$$
\begin{equation*}
f(x)=x^{\prime}, f(e)=0, \quad(e \neq 0,1) \tag{iii}
\end{equation*}
$$

But equations (iii) are inconsistent. Hence, our algebra $A$ has no unit-zero function with respect to a sequence containing the element 0 .

Similarly, our algebra $A$ has no unit-zero function with respect to a sequence containing the element 1 . Hence, a Boolean algebra of more than two elements has no unit-zero functions at all.

Our main result is, then, the following theorem.
Theorem A. The only Boolean unit-zero algebra is a two-element Boolean algebra.
3. Dual Considerations. By the Principle of Duality in Boolean algebras each of the foregoing propositions about unitzero Boolean functions has a dual proposition corresponding to it. To state these duals, let me use the notion of zero-unit function (to be distinguished from unit-zero function). By a zerounit function of $x_{1}, x_{2}, \cdots, x_{m}$ with respect to the sequence $a_{1}, a_{2}, \cdots, a_{m}$, symbolized by

$$
\left[x_{1}, x_{2} ; \cdots, x_{m} ; a_{1}, a_{2}, \cdots, a_{m}\right]
$$

let us mean a function $f\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ such that $f=0$ or 1 , according as $x_{i}=a_{i},(i=1,2, \cdots, m)$, all hold or do not all hold. The duals of (2), (3), and (4) are, then, respectively ( $2^{\prime}$ ), ( $3^{\prime}$ ), and (4') following:

$$
\begin{gather*}
{\left[x_{1}, x_{2}, \cdots, x_{m} ; a_{1}, a_{2}, \cdots, a_{m}\right]} \\
\quad=\left[x_{1} ; a_{1}\right]+\left[x_{2} ; a_{2}\right]+\cdots+\left[x_{m} ; a_{m}\right] \\
a+\left[x_{1}, x_{2}, \cdots, x_{m} ; a_{1}, a_{2}, \cdots, a_{m}\right]=a \text { or } 1 \tag{3'}
\end{gather*}
$$

according as $x_{i}=a_{i},(i=1,2, \cdots, m)$, all hold or do not all hold;
(4') $\left\{a+\left[x_{1}, x_{2}, \cdots, x_{m} ; a_{1}, a_{2}, \cdots, a_{m}\right]\right\}$
$\cdot\left\{b+\left[x_{1}, x_{2}, \cdots, x_{m} ; b_{1}, b_{2}, \cdots, b_{m}\right]\right\}=a$, or $b$, or 1,
according as $x_{i}=a_{i}$ all hold, or $x_{i}=b_{i}$ all hold, or neither $x_{i}=a_{i}$ all hold nor $x_{i}=b_{i}$ all hold, $\left(i=1,2, \cdots, m ; a_{i} \neq b_{i}\right.$ for some $i$ ).

The dual of Theorem $A$ is
Theorem A'. The only zero-unit Boolean algebra is a two-element Boolean algebra.

For a two-element Boolean algebra we have, further:

$$
\begin{array}{rlrl}
{[x ; 0]} & =x, & {[x ; 1]} & =x^{\prime} \\
{[x, y ; 0,0]} & =x+y,[x, y ; 0,1] & =x+y^{\prime}  \tag{7'}\\
{[x, y ; 1,0]} & =x^{\prime}+y,[x, y ; 1,1] & =x^{\prime}+y^{\prime}
\end{array}
$$

In general, the zero-unit functions of $m$ variables are the $2^{m}$ fac-tor-constituents in the dual normal development of 0 with respect to the $m$ variables.

Propositions ( $\left.2^{\prime}\right)-\left(7^{\prime}\right)$ will be used below in the representation of operations that do not satisfy the condition of closure.
4. Representations. It is now clear to what extent we can apply unit-zero Boolean functions in the representation of arbitrary operations and relations. From Theorem A, we have

Theorem B. A unit-zero Boolean representation of arbitrary operations and relations is possible when and only when the class consists of two elements.

For a two-element class $K$, the theory of Boolean representation follows from propositions (2)-(7) and their duals. If we denote the two $K$-elements by the Boolean symbols 0,1 , the representations of all operations $O$ and relations $R$ in $K$ are covered by the cases $1-3$ following.

CASE 1. $O$ an $m$-ary operation satisfying the condition of closure. There is a $K$-element, 0 or 1 , for every sequence $e_{1}, e_{2}, \cdots, e_{m}$ taken from $K$. Let the sequences to which 1 corresponds be
(i) $\alpha_{11}, \alpha_{12}, \cdots, \alpha_{1 m} ; \alpha_{21}, \alpha_{22}, \cdots ; \alpha_{2 m} ; \cdots ; \alpha_{k 1}, \alpha_{k 2}, \cdots, \alpha_{k m}$.

The representation of $O$ is the Boolean function

$$
\begin{equation*}
\sum_{i=1}^{k}\left(x_{1}, x_{2}, \cdots, x_{m} ; \alpha_{i 1}, \alpha_{i 2}, \cdots, \alpha_{i m}\right) \tag{8}
\end{equation*}
$$

CASE 2. O an m-ary operation not satisfying the closure condition. There are sequences in $K$ to which no $K$-elements correspond. Let these sequences be
(ii) $\beta_{11}, \beta_{12}, \cdots, \beta_{1 m} ; \beta_{21}, \beta_{22}, \cdots, \beta_{2 m} ; \cdots ; \beta_{k 1}, \beta_{k 2}, \cdots, \beta_{k m}$.

Consider the operation $O^{\prime}$ obtained from $O$ by assigning a $K$ element, 0 for convenience, to each of the sequences (ii). Let $\phi\left(x_{1}, x_{2}, \cdots, x_{m}\right)$, obtained as in Case 1, be the representation of $O^{\prime}$. Then the representation of $O$ is the function
(9) $\phi\left(x_{1}, x_{2}, \cdots, x_{m}\right)+\sum_{i=1}^{k} 0 /\left[x_{1}, x_{2}, \cdots, x_{m} ; \beta_{i 1}, \beta_{i 2}, \cdots, \beta_{i m}\right]$,
where $a / b$ means the unique $K$-element $q$ satisfying the condition $b q=a$.*

Case 3. $R$ an m-adic relation. Let the sequences which do not satisfy $R$ be
(iii) $\gamma_{11}, \gamma_{12}, \cdots, \gamma_{1 m} ; \gamma_{21}, \gamma_{22}, \cdots, \gamma_{2 m} ; \cdots ; \gamma_{k 1}, \gamma_{k 2}, \cdots, \gamma_{k m}$.

Then the representation of $R$ is the Boolean equation

$$
\begin{equation*}
\sum_{i=1}^{k}\left(x_{1}, x_{2}, \cdots, x_{m} ; \gamma_{i 1}, \gamma_{i 2}, \cdots, \gamma_{i m}\right)=0 . \dagger \tag{10}
\end{equation*}
$$

Of course, by the Duality Principle, the theory of representation can be stated primarily in terms of zero-unit functions instead of unit-zero functions.
5. Illustrations. The following illustrations, one for each of the above three cases, will make the theory of representation quite clear.
$\alpha$. Let $O$ be the operation defined by

[^2](i)

| - | 0 | 1 |
| :--- | :--- | :--- |
| 0 | 1 | 0 |
| 1 | 0 | 1 |.

Its representation is

$$
\begin{equation*}
(x, y ; 0,0)+(x, y ; 1,1) \equiv x^{\prime} y^{\prime}+x y . \tag{ii}
\end{equation*}
$$

$\beta$. Let $O$ be the operation

|  | 0 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 1 | - | - |

where the blanks indicate that there are no $K$-elements corresponding to the sequences 1,$0 ; 1,1$.

Consider the operation $O^{\prime}$ defined by
(iv)

| - | 0 | 1 |
| :--- | :--- | :--- |
| 0 | 0 | 1 |
| 1 | 0 | 0 |.

By Case 1 , the representation of $O^{\prime}$ is
(v)

$$
x^{\prime} y
$$

Hence, the representation of $O$ is

$$
\text { (vi) } \begin{aligned}
x^{\prime} y+0 /[x, y ; 1,0]+ & 0 /[x, y ; 1,1] \\
& \equiv x^{\prime} y+0 /\left(x^{\prime}+y\right)+0 /\left(x^{\prime}+y^{\prime}\right)
\end{aligned}
$$

$\gamma$. Let $R$ be a relation defined by

$$
\begin{array}{c|cc} 
& 0 & 1  \tag{vii}\\
\hline 0 & - & + \\
1 & + & -
\end{array}
$$

where "+" indicates that $R$ holds and " - " indicates that $R$ does not hold. Its representation is the equation
(viii) $\quad(x, y ; 0,0)+(x, y ; 1,1) \equiv x^{\prime} y^{\prime}+x y=0$.*

The University of California

[^3]
[^0]:    * Presented to the Society, April 11, 1931.
    $\dagger$ B. A. Bernstein and N. Debely, A practical method for the modular representation of finite operations and relations, this Bulletin, vol. 38 (1932), pp. 110-114.

[^1]:    * The usual Boolean notations are employed: $a+b, a b, a^{\prime}, 0,1$ are respectively the sum of $a$ and $b$, the product of $a$ and $b$, the negative of $a$, the zero element, the whole.

[^2]:    * For a two-element Boolean algebra the quotient can be defined precisely as in ordinary algebra.
    $\dagger$ Instead of 0 , we can use 1 in (10), provided (i) are the sequences which do satisfy $R$.

[^3]:    * For a complete set of Boolean representations of binary operations and dyadic relations in a two-element class, obtained from considerations other than the above, see my Complete sets of representations of two-element algebras, this Bulletin, vol. 30 (1924), pp. 24-30.

