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ON YOUNG'S D E F I N I T I O N OF AN 
ALGEBRA* 

BY L. E. BUSH 

1. Introduction. The usual definition of linear algebra t pre­
supposes a number field over which the algebra is taken. Some 
of the properties of the algebra are dependent upon the proper­
ties of this associated field, for instance, the property that if e 
is an idempotent element, the subalgebra with basis e is a field 
and therefore permits unique division by every non-zero ele­
ment. 

Youngî has given a definition of a general algebra and noted 
that a large part of the theory of linear algebras, is valid for it. 
This definition does not introduce the associated field. Young 
concludes his paper with "Precisely to what extent, if at all, the 
present formulation is more general than the current one in 
terms of a field is a problem of no little interest." He notes the 
fact that every Dickson algebra is a Young algebra. That the 
converse of this is not true, however, is shown by the simple ex­
ample of a modular ring. In fact, a modular ring possesses an 
idempotent element which generates by addition alone the en­
tire algebra, yet division is not unique. Ingraham§ has noted 
this lack of restrictiveness of Young's definition, a lack of which, 
as I have been informed by Ingraham, Young had become 
cognizant. 

The scalar multiplication in a Dickson algebra is not an opera­
tion within the algebra itself and it was with the view of elimi­
nating this foreign operation that Young gave his definition. 
But, whether or not this operation is made a part of the defini­
tion of such an algebra, the possibility of defining an associated 

* Presented to the Society, February 25, 1933. 
t L. E. Dickson, Algebren una ihre Zahlentheorie, Zurich, 1927, pp. 23-24 

and p. 32. A linear algebra as defined by Dickson will hereafter be referred 
to as a Dickson algebra. 

Î J. W. Young, Annals of Mathematics, (2), vol. 29 (1927-28), pp. 54-60. 
A general algebra as defined by Young will hereafter be referred to as a Young 
algebra. 

§ M. H. Ingraham, this Bulletin, vol. 38 (1932), p. 100. 
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field and a scalar multiplication is certainly a property of every 
Dickson algebra, and the lack of this property in the Young 
algebra gives it its greater generality. 

Assuming that it would be desirable to give a definition for 
a Dickson algebra which makes use only of operations within 
the algebra itself, it is the purpose of this paper so to extend 
Young's definition by the addition of postulates as to make it 
equivalent to Dickson's definition. It will be pointed out that 
these postulates, as applied to a Dickson algebra, are equivalent 
to certain of Dickson's postulates on scalar multiplication. 

2. Young's Definition. In brief, Young's definition is as fol­
lows. Let © be a system of two or more elements and two opera­
tions, addition and multiplication, and let the elements of © 
form an abelian group, ®, under addition. A class [§] of sub­
groups of © is called a partition of © if every element a (except 
the identity) of © is in one and only one subgroup § a of [§ ] . 
The partition [^] is called an L-partition if the subgroup 
{§i> §2, * * • , §r} of © generated by any finite number r of 
subgroups p̂ is such that, if S&k is any other ^), then either 
{§i, §2, • • • , § r } contains §& or it has no element in common 
with §/c except the identity of @. 

Let [§] be an L-partition of ©. Let (a) denote that § which 
contains the element a and call it a simple linear set of ©. By the 
product (u) (v) of the simple linear sets (u) and (v) is understood 
the set of all elements of © obtained by multiplying an element 
of (u) by an element of (v) in the order indicated. If for every 
choice of u and v, (u)(v) = (uv), where (0) is the set consisting of 
the single element 0 (that is, the identity of @), [§] is called 
an invariant L-pàrtition. 

Denote by (a, b, • • • , p) the subgroup of © generated by 
(#)> (b), • • • , (p) and call it a linear set of ©. A finite set of ele­
ments ai, &2, • • • , ar of © is said to form a basis of order rfor © 
if there exists an invariant L-partition of ©, such that (#i), 
(a2), • • • , (ar) are all different and (ai, a2, • • • , ar) = ® . 

A Young algebra 31 of order r (r finite) is a system consisting 
of a set © of two or more elements, a, b, • • • , and of two opera­
tions, addition ( + ) and multiplication (•), and satisfying the 
following postulates. If a, b, and c are any three elements of ©, 

Al . a + b is a uniquely determined element of ©. 
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A2. a+b = b+a. 
A3. (a+b)+c = a + (b+c). 
A4. There exists in © an element 0 such that a + 0 = a. 
A5. There exists in © an element —a such that a + ( — a)=0. 
From these postulates it follows that 21 is an abelian group 

under addition and that the definitions in the first part of this 
section can therefore be applied to St. 

M l . ab is uniquely a determined element of ©. 
M2. a(b+c)=ab+ac. 
M3. (b+c)a = ba+ca. 
F. St possesses a basis of order r (r finite). 
On the basis of these postulates Wedderburn's* calculus of 

complexes can be established and the first twenty-four theo­
rems of his paper proved. 

The definition of a Young algebra as given above is not ex­
actly in the form in which Young stated it; however, only un­
essential changes have been made, particularly the explicit 
definition of the order of the algebra. 

3. The Associated System. Let St be a Young algebra. St will 
be said to have isomorphic linear sets with respect to its basis if 
for every pair of elements a and b of St, neither of which is zero, 
there exists a simple isomorphism under addition between (a) 
and (b) such that a as an element of (a) corresponds to b as an 
element of (b). 

Thus if St has isomorphic linear sets there is an isomorphism 
between (a) and (b) in which any element a1 of (a) corresponds 
to any element b' of (b). In particular, (a) is isomorphic with 
itself in such a manner that an arbitrary element af of (a) corre­
sponds to a. We shall introduce the abbreviation: a1 in (a)~b' 
in (b), which is to be read a' as an element of (a) corresponds to b' 
as an element of (b) in that isomorphism between (a) and (b) in 
which a corresponds to b. 

St will be said to have equivalent linear sets with respect to its 
basis if 
(1) it has isomorphic linear sets with respect to its basis; 
(2) a' in (a)~b' in (6), c' in (c)~d' in (d)} (ac^O, bd^O), 
always implies afcf in (ac)~brdr in (bd); 

* J. H. M. Wedderburn, Proceedings of the London Mathematical Society, 
(2), vol. 6 (1908), pp. 79-81. Young, loc. cit., p. 60. 
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(3) a" in (a')~bf in (&), a' in (a)~c' in (c), (fc^O), 
always implies an in (a)~b'cf in (be); 
(4) b in (a\-\-a>i)~ai in (ai)~ai in (a2) 
always implies b=a{ +#2'. 

Let 21 be a Young algebra with equivalent linear sets with re­
spect to its basis and let 212TZ£0. Let © be a system consisting 
of a set of elements (which we shall denote by Greek letters) and 
of two operations, addition and multiplication. Let the elements 
of © be in bi-unique correspondence with the elements of the 
simple linear set (a) of 21, and let addition in © be defined by 
postulating that © be isomorphic with (a) under addition. Since 
21 has equivalent linear sets, © is isomorphic under addition 
with every simple linear set of 21. We define the product a/3 of 
any two elements a and /3 of © as follows. Since 2t 2 ^0, there 
exist in 2Ï two elements a and b (which may be identical) such 
that ab^O. Let a' in (a) ~a in © and b' in (b) ~fi in ©. The 
product a/3 is that element of © which corresponds to the ele­
ment a'bf in (ab). That afi is thus uniquely defined is a conse­
quence of the equivalence of the linear sets, for if c and d are 
two other elements of 21 such that cd 9^ 0 and these elements are 
used instead of a and b to define cq8, we have by (2) that c'd' in 
(cd) ~a'bf in (ab) and are thus led to the same element a/3 of @. 
We shall call © the system associated with the basis of 21 from 
which these linear sets arise. 

4. Completion of the Definition. In order to make Young's 
definition equivalent to that of Dickson we add to the postu­
lates of §2 two others. 

POSTULATE E. Some basis of 21 gives rise to equivalent linear 
sets. Such a basis will be called an E-basis of 21. 

FIELD POSTULATE. If 2l27zé0, the system © associated with some 
E-basis of 21 is a field. If 212 = 0, there exists a field simply isomor­
phic under addition with the linear sets of some E-basis of 2Î. 

The two following theorems show the equivalence of the 
definitions. In the proof of the first theorem it becomes evident 
that, as applied to a Dickson algebra, the postulates here added 
are equivalent to Dickson's postulates on scalar multiplication.* 

THEOREM 1. Every Dickson algebra is a Young algebra which 
satisfies Postulate E and the Field Postulate. 

* Dickson, loc. cit., p. 24, Postulates II and III. The subdivisions of these 
postulates are referred to below as II (1), etc. 
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Let SÏ be a Dickson algebra of order n over a field % with the 
basis C], e2, • • • , en. Then 21 is a Young algebra and its basis as 
given above is a basis in the sense of Young. We have to show 
that Postulate E and the Field Postulate are satisfied. 

If x = J^A=\Xjej is any element of 21, (x) consists of all elements 
ax as a varies over %. Let y =]Cr=i3 ;^ be another element of 21 
(y may be identical with x). Consider the correspondence be­
tween (x) and (y) in which ax ~ay. In this correspondence x ~y. 
The correspondence is evidently an isomorphism under addition 
and therefore satisfies (1). Since (ax)(f3y) = (a(3)(xy)* (2) is 
satisfied. Since a(J3x) = (a/3)#,f (3) is satisfied. Since a(x+y) 
= ax+ay,i (4) is satisfied. Thus Postulate E is satisfied by 21 
and since % is a field the Field Postulate is also satisfied. 

I t may be noted that although Dickson's postulates 11(1) and 
III (1) are not explicitly made use of in the above proof, they 
are implicitly assumed in the two added postulates, that is, in 
the possibility of relating a field to the algebra in the particular 
manner assumed. 

LEMMA. If a±y a2, • • • , an are linearly independent^ elements 
of a Young algebra which satisfies Postulate E and the Field 
Postulate and al is in (a^ (i = l, 2, • • • , n) and y]"=\ a( is in 
CEXia;), then ai in (ai) ~ ]QLia / in < 2 X i a 0 -

For, let ck=Yll=iai~ak, so that ^2f=iai = ak+Ck1 and let bk 

and ci be such tha tJ^Lia» ' in (ak+ck) ~bk' in (ak) ~ck in (ck). 
Hence, by (4), X X ia*' = ^ ' +<* • Birt ck is in (ck), hence in the 
linear set S = (ai, a2, • • • , a^-i, a^+i, • • • , an),|| andXX=i a / — &£ 
is for a similar reason in (S. On the other hand b{ and ak are in 
the linear set (ak), and (ak) AE = 0. Therefore bk =ak% and ak 

in (a*) ~X)?=ia/ m GC?-i0i)-
THEOREM 2. Every Young algebra which satisfies Postulate E 

a t ó /&e 7<Ï£/d Postulate is equivalent to a Dickson algebra.** 

* See Dickson, I I , (3). 
t See Dickson, I I , (2). 
t See Dickson, I I I , (2). 
§ A set of elements is linearly independent in the sense of Young if no one 

of them belongs to the linear set generated by the others; Young, loc. cit., 
p. 57. 

|| Young, loc. cit., p. 57. 
11 Young, loc. cit., p. 56. 
** Equivalent to a Dickson algebra with respect to the operations within 
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Let 21 be a Young algebra of order n having the basis ei, 
ez, • - • , en satisfying Postulate E and the Field Postulate. If 
2I2 = 0, there is a field g isomorphic under addition with the 
linear sets (ei), (ei), • * • , (en). The zero Dickson algebra of 
order n over % is evidently equivalent to SI. 

Suppose WT^O, and let @ be the system associated with the given 
basis. Then © is a field. Since 21 = (eh e2, • • • , en), «t^ =X)2«ia»7*» 
where ai2-k is in (e&). Let the elements of © be denoted by Greek 
letters. Then a^h in (eii) ~onjh in ©. Consider the Dickson alge­
bra of order n over the field © with the basis el, el, • • • , £n', 
where 

n 

&i &j ==: / j(Xiik6k y 

the ûfij-jfe being defined as above. If # is any element of 21, 
x =y%2i=iXi, where Xi is in (ei). Let x* in (ei) ~(3{ in ©. Then to the 
element x of 21 let correspond the element x ' = X^=ifte/ of the 
Dickson algebra 21'. 

Let x and y be any two elements of 21 and x' and y' the corre­
sponding elements of 21'. Then 

n n 

1=1 i= l 

where #»• and y^ are in (ei), and x+3> =2^=10^+3^)- Let x« in 
(«»•) ~/?» in ©, and 3>; in (ei) ~ji in ©; then Xi+yi in (et-) ~ft+Y» 
in ©. The element x + j in 2Ï ~ the element 

£(& + 7i)e! = !>*/ + î>*/ = x' + y' 
1=1 4=1 i = l 

in 21'. Therefore 21 and 21' are isomorphic under addition. 
Moreover, 

n n n 

xy = S ^ / J x'y' = J2Piyie'eJ> %iyj = iLbiih 

where b^-k is in (e&). Suppose e4e,^0. Because of the invariance 
of the linear sets, xty, is in (e^ei) and by the definition of multi­
plication in®,Xiyj in (etei) ~j3*Y/ in ©. Let at-,-Pt, (s = 1, 2, • • • ,r), 

the algebra, tha t is, a Dickson algebra can be constructed which is isomorphic 
with the given algebra under addition and multiplication. Although scalar 
multiplication is not defined for the given algebra this theorem shows the 
possibility of defining such an operation for it. 
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be the set of all the a^k, (& = 1, 2, • • • , n), which do not vanish. 
Then 

n n 

and is contained in the linear set & = (ePl, eP2J • • - , ePr). But 
x%yj=^Llk=\biik is in (e^y) and therefore also in E.* On the other 
hand, since b^k is in (e&), ^«Li&i/p, is in S and it follows that 

n r 

is in S. But the latter is evidently in a linear set supplementary 
to S in 21 and is therefore zero. All the elements appearing in 
this latter expression which do not vanish are, however, linearly 
independent; while a sum of linearly independent elements can 
not vanish.f Hence bijk = 0, k^psy (s = l, 2, • • • , r). Similarly, 
since etej is in (xiyj), bijk = Q implies 0 ^ = 0. Such of the a^k as 
are different from zero are linearly independent and by the 
Lemma b^k in ( a ^ ) ~x%yj in (et-e,-) ~$Cfj in ©. Because of the 
isomorphism of (e&) and © under addition, «»•ƒ& = 0 if and only if 
&ijk = 0. By (3), &ijfc in (#&) ̂ ^^%yjOt-ijk in ©, and ôîj& as an element 
of 2Ï therefore corresponds to ficti&w&l as an element of 2t'. If 
£;0? = 0, aijk = 0, (& = 1, 2, • • • , w), and on account of the in­
variance of the linear sets #<y,- = 0, therefore &;̂  = 0, 
(& = 1, 2, • • • , n). But a,-/* = 0 implies a^k = 0, and &,•# = 0 as an 
element of 21 still corresponds to ficfjOLijkek = 0 as an element of 
2t'. Because of the isomorphism of 2t and 2t' under addition, 

n n n 

xy = ]£#»*ƒ = ZX-/& in ̂  ^ X&7ya;,W 
i,i—l i,j,k=l i,j,k=l 

n 

= ^C&T^/tf/ = tf'/in^'. 

Thus 2Ï and 21' are equivalent algebras. 

T H E OHIO STATE UNIVERSITY 

* Young, loc. cit., p. 57. 

t Young, loc. cit., p. 56. 


