
ON T H E I N F I N I T E SEQUENCES ARISING IN T H E 
T H E O R I E S OF HARMONIC ANALYSIS, OF INTER

POLATION, AND OF MECHANICAL 
QUADRATURES* 

BY LEOPOLD FEJÉR 

1. Introduction. The three mathematical theories indicated 
in my title are so extensive that I should naturally be unwilling 
within the bounds of a single discussion to give an outline of the 
totality of the relevant investigations. On the contrary I shall in 
each case bind myself to a portion of the corresponding theory. 
The investigations which I have in mind, and which I hope to 
be able to present to you, have been conducted almost entirely 
in the twentieth century. Even in this portion of the theory, 
however, so many brilliant contemporary mathematicians have 
collaborated that a considerable complex of investigations has 
resulted. Thus I shall select from this narrower field only a few 
results,—such, however, as are characteristic and have served 
as points of departure for further researches. 

I shall therefore undertake to give only an outline of these 
dominant characteristic results, and shall accomplish this by 
exhibiting as clearly as possible the single fundamental idea 
which unites them. If I can succeed in the course of my lecture 
in making the investigations of the whole complex seem to you 
less diversified, I shall have achieved my goal. 

2. Fourier Series. I begin my exposition with Fourier series. 
If ƒ(/) denotes an integrable real function of the real variable /, 
having the period 27T, then the constants 

(i) 

i riT 

«o = — I f(t)dt, 
Z7T %/ 0 

1 r^ 
dn =* — I f (I) cos nt dt, 

7T J o 

i r2r 

bn = — I f(t) 
T Jo 

\ r ( » = 1 , 2 , 3 , - . . ) , 

sin nt dt> 

* An address delivered by invitation of the authorities of the Century of 
Progress Exposition and the American Association for the Advancement of 
Science at the World's Fair in Chicago, June 21, 1933, before the American 
Mathematical Society and Section A of the A.A.A.S.—The author is indebted 
to Professor W. A. Hurwitz for the preparation of the English version of this 
address. 
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are known as the Fourier constants of ƒ(t), and the infinite se
ries 

#o + #i cos x + bi sin x + • • • 
(2) 

+ dn cos nx + bn sin fix + - - - — ^2(an cos wx + bn sin ^x) 

is called the Fourier series of the function ƒ. The sum of the first 
n + 1 terms of this series is clearly 

1 f2*" f sn(x) = — I ƒ(£) {1 + 2 cos t cos x + 2 sin / sin x + • • • 
27T J 0 

(3) > 
+ 2 cos nt cos w# + 2 sin «J sin »# J dt. 

In most cases, however, i t is convenient to note that 

1 + 2 cos / cos x + 2 sin t sin x + • • • 
/ — x 

sin (2rc+ 1) 

+ 2 cos w/ cos nx + 2 sin »/ sin ^# = ; 
t — x 

sin 
2 

so tha t we have for the so-called partial sum of the Fourier se
ries of index n for the value x the Dirichlet formula 

sin {In + 1) 
1 r2r 2 

(4) sn(x) = — f{t) dt. 
Z7T J 0 t — X 

sin 
2 

Now let us form the arithmetic mean Sn{x) of the partial sums 
So(x), Sx(x), • • • , $w(#), so that 

sD(x) + SiO) + • • • + sn{x) 
(5) Sn(tf) = —; 

n + 1 
From the obvious formula 

1 1 r^ ( 

Sn{x) = I f{t) {{n + 1) + n» 2 cos / cos % 
n + 1 2TT J o 

(6) + ^« 2 sin t sin x + • • • + 1 • 2 cos ^/ cos nx 

+ 1 • 2 sin #/ sin nx} d/, 
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by use of the identity 

(7) (n + 1) + n> 2 cos / cos x + n- 2 sin t sin x + 

+ 1-2 cos nt cos nx + 1 • 2 sin nt sin nx 

sin (w + 1)-
/— x 

t — x 
sin-

follows 

(8) sB(*)=_L_- f*'f(f) 
2ir(n + 1) J o 

sin (w + 1)-
t — x 

t — x 
sin-

J/, 

(n = 0, 1, 2, • • • ). 

If to each value x of an interval is made to correspond a nu
merical value of/, ƒ is called a function of x. If to each function 
ƒ of a set of functions a numerical value A is made to correspond, 
then A is said to be obtained from ƒ by a functional operation 
(briefly operation). If we now think of x as fixed, and corre
spondingly write sn, Sn for sn(x), Sn(#), then obviously sn and 
Sn are each formed by an operation on ƒ(/) : 

(9) 

(10) 

sn 

These operations are both ordinary linear functional opera
tions. An essential difference between them is, however, that 
the operation Sn\f] is positive, while the classical operation 
sn[f] does not possess this property. An operation A [ƒ] is called 
positive, provided A [ƒ ] ̂  0 whenever f (t) ^ 0 throughout the interval 
of values of t in which the function f(t) is considered. 

I published this result in 1900. I t is remarkable that from 
the classical indefinite operation sn[f], the definite (positive) 
operation ow [ƒ] can be obtained by a very slight modification 
without any limit process. The sharpness of the contrast be
tween these two types of linear operation, as viewed at the time 
of my investigation, undoubtedly increased the long existing 
interest of mathematicians in this distinction. 
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So much has been published concerning the meaning of the 
operation Sn[f] of the arithmetic mean, and various kinds of 
more delicate considerations, further generalizations, and appli
cations, that I must unfortunately omit all mention of them, in 
accordance with the plan of this lecture. I must thus neglect a 
mass of material, to which I have myself often endeavored to 
contribute, and which has been enriched by a long list of pro
found articles by other mathematicians. 

3. Further Remarks on Fourier Series. I continue, still remain
ing within the domain of Fourier series. As we have essentially 
seen already, the positiveness of the operation Sn [ƒ] follows im
mediately from the simple fact that the ordinary arithmetic 
means of the partial sums of the series 

(11) 1 + 2 cos 0 + 2 cos 20 H h 2 cos nO + • • • 

are all non-negative for every real value of 0. Very recently I 
have made the observation that for the series 

(12) 0 + sin 0 + 2 sin 20 + 3 sin 36 + • • • + n sin nd + • • • 

the arithmetic means of third order 5„(3) (0) of the partial sums 
Sho)(0) =sn(0)y are all positive in the interval O < 0 < x (except of 
course SQS) (0) = 0). For the means of orders 0 ,1 , and 2 of the series 
(12) this assertion is not valid. I have further noted,—and this 
seems to lie somewhat deeper,—that for the series 

(13) sin 6 + 3 sin 36 + 5 sin 50 + • • • 

even the arithmetic means of second order of the partial sums 
are all non-negative in the interval O<0<7r. (In this case even 
more detailed statements can be made.) For the means of orders 
0 and 1 of the series (13) this assertion is not valid. 

To these properties of the series (12) and (13) again corre
spond in a certain sense positive linear functional operations on 
the pure Fourier sine-series or the pure cosine-series of a func
tion f(x). But I shall not exhibit these operations here, nor dis
cuss the numerous interesting consequences of their positive
ness. 

As, however, this is an entirely new direction of investigation, 
1 shall allow myself to mention just one characteristic result. 

Let the function fix) be positive and convex (or even not con-
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cave) upward everywhere in the interval 0<x<7r . In order to 
have a particularly interesting special case, I assume further 
that the curve y =f(x) has the property of symmetry, 

f(v — x) = ƒ ( » for 0 g x < —. 

The Fourier sine-series of the function f(x) has the form 

(14) f(x) ~ bi sin x + bz sin 3x + • • • + b^v-i sin (2v — l)x + • • •, 

where 

2 rT 

(15) £2,-i = — ƒ(*) sin (2v - l)tdt> (v = 1, 2, 3, • • • ) . 
7T J o 

As an immediate consequence of the statement about the series 
(13) we have the following theorem: all arithmetic means of 
second order of the partial sums of the Fourier sine-series (14) 
for the function ƒ(x) are positive and convex upward in the inter
val 0<x<ir. The arithmetic means of orders 0 and 1 on the 
other hand do not in general possess this property of convexity. 

O 7T 

The accompanying figure* illustrates this theorem in the 
simplest imaginable special case, in which f(x) is constant in the 

* I am indebted to Mr. I. Raisz for the careful drawing of this figure. 
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interval O^x^w (thus y=f(x) is non-concave upward). The 
Fourier sine-series of the function 

(16) f(x) = — ; (0 < x < TT), 

is 

sin x sin 2x sin 3x sin 4# 

o + _ r + 0 _ + _ + o— 
sin5# 

+ — + • • • • 

The upper curve of this figure represents the partial sum of 
index 12 of this sine-series (17), that is, 

o<°>/ N v^ s i n (2v ~ Vx 

Su (x) = 2 . : 
r=l 2V — 1 

The middle curve represents the arithmetic mean of first order 
Su(x) and the lower curve the Cesàro mean of second order 
S$(x) of the series (17). The interesting curves S$(x), S$(x) 
are already found in the book of H. S. Carslaw on Fourier Series 
in connection with the discussion of the famous Gibbs phenome
non, which arises in the case of the partial sums sn(x) = S(® (x) 
but disappears for the means of first order Sn

(1) (x). If we now 
examine the three curves from the point of view of convexity-
concavity, we observe that both Sw(x) and S$(x) are composed 
of arcs, which are alternately convex and concave upward. On 
the other hand the new curve S$(x), the lower curve, which 
represents the Cesàro mean of second order of index 12 for 
the series (17), is convex upward in the whole interval 0 < x < ir. 

Theorems such as the preceding illustrate from a new angle 
the "smoothing-out effect" on the Fourier series of the process 
of forming repeated means. I should like to conclude this con
sideration with only the further observation that the smoothing-
out effect of repeated formation of means is very notable in 
another connection. If 

(18) w = f(z) = Co + ciz + c2z
2 H h cnz

n + • • • 

is a power series which is regular and assumes each of its values 

fix) =^ = 
(17) 
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only once in the circle \z\ < 1 , this property is not in general 
shared by the partial sums 

(19) Sn\z)= sn{z) = cQ +clZ + • • • + cnz
n, {n = 0, 1, 2, 3, • • •), 

for the whole unit circle. But the arithmetic means of second 
or third order 5n

(2) {z), Sn
(z){z) of the partial sums (19) maintain 

the property of the original function (i.e. take on each of their 
values only once in the whole unit-circle), provided the power 
series co-\-ciZ+C2Z2-{- • • • belongs to a certain special, but re
markable, subclass of the totality of series having the specified 
property. 

4. Laplace Series. If 5n
(0) [ƒ]=$*[ƒ] denotes the partial sum 

of index n of the Laplace series for a function ƒ(#, 0) , integrable 
over the unit sphere, then it is well known that for a fixed point 
(0, <j>) of the unit sphere 5n

(0) [ƒ] represents an indefinite linear 
operation o n / . The operation Sn

(1) [ƒ], which is defined by the 
arithmetic means of first order of the Laplace series, is also in
definite. But the operation 5n

(2) [ƒ] is positive. 
I obtained this result in 1908. It is now possible to give a 

proof as follows. Obviously, we have only to show that the 
means of second order for the series 

(20) P0(cos 0) + 3Pi(cos 0) 

+ SP2(cos 0) + • • • + {2n + l)Pn(cos *) + • • • 

are positive for O<0<7r. This is accomplished at one stroke by 
the use of Mehler's formula for the Legendre polynomial 
Pw (cos 0) : 

t 
sin (In + 1)— 

2 r* 2 
(21) Pn(cOS0) = — —<«, 

V 7T Je [2 (cos0-cos / ) ] 1 / 2 ' 
since, as previously stated, the means of second order of the 
series 

t t t 
(22) sin h 3 sin 3 h 5 sin 5 \- • • • 

2 2 2 
t 

+ {In + 1) sin (2M + 1)— H 
are positive for 0 < t < w. 
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I shall not dwell further on positive operations in the domain 
of Fourier and Laplace series. But in any case I must at least 
refer to the two important positive operations introduced by 
D. Jackson. Both are closely related to our first example of a 
linear operation, that of the arithmetic mean, in which occurs 
the "kernel" (sin nt/sm t)2. Jackson's first operation is used for 
the approximation (by trigonometric polynomials) to functions 
subjected to certain restrictions. His second operation is used 
for the trigonometric approximation to arbitrary continuous 
functions; it consists in a method of interpolation, and is closely 
related to the operations which we shall consider next. 

5. Interpolation. In the present part of this lecture I shall con
cern myself with interpolation, and in particular, I shall indicate 
briefly how the theory of interpolation can utilize the idea of the 
positive linear functional operation. 

If xi, x2, • - -, xn denote arbitrary distinct real numbers, then 
the Lagrange interpolation formula is 

(23) L(x) = yih(x) + y2l2(x) + • • • + yJn(oc). 

This formula represents the polynomial of degree at most n — 1, 
which assumes the arbitrarily given values yu y2, • • • , yn re
spectively for the values xi, x2, • • • , xn. Here 

(24) h(x) = — - ^ -> (* = 1, 2, • • •, »), 
co (xk)(x — Xk) 

where 

(25) œ(x) = C(x — Xi)(x — #2) • • • (x — xn), (C 7e 0). 

Usually yij y2, • • • , yn are the ordinates of a given curve 
y—f(x) for the abscissas x = xh x2, • • • , xn; that is, yi=f(xi), 
y2=f(x2)j • • • , yn—f{pcn). In this sense, therefore, the classical 
Lagrange formula defines for a fixed value of x a linear func
tional operation L [ƒ]. For no choice of the abscissas X\, x2l • • •, xn 

(if n ^ 2), however, is this operation positive (for any fixed value 
of x different from #1, x2l • • • , #«). This is because each of the 
so-called fundamental polynomials h(x), l2(x), • • • , ln(x) of the 
Lagrange interpolation formula changes its sign n — 1 times. 

Let us now examine from this point of view the simplest so-
called Hermite interpolation formula 
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(26) X(x) = £?***(*) + £?*'$*(*). 
& = 1 & = 1 

This represents the polynomial of degree at most 2n — 1 which 
for the values xi, x2, • • • , xn assumes respectively the values 
yu y2, - - - , yn and whose derivative correspondingly assumes 
the values y{, yi, • • • , yn

f. Here hi(x), fe(#), • • • , hn(x) are 
the so-called "fundamental functions of the first kind" for the 
Hermite interpolation formula (26) : 

(27) hk(x) = ( 1 - — f - (* - **) )(/*(*))2, (* = 1, 2, • • • , if), 
\ « («*) / 

and ï)i(x), ffeO*0> * * ' y i W are the "fundamental functions of 
the second kind" : 

(28) $*(*) = (* - xk)(h(x))2, (É = 1, 2, • • • , »), 

where co(x) and /&(#) have the same meaning as before. 
If we now merely glance at the Hermitian fundamental func

tions hk(x) and §k(x), we see at once that they have, in contrast 
to the Lagrangian fundamental functions h(x), a kind of tend
ency to be positive. I shall make this statement more precise. 

The fundamental function §k(x) is equal to the square of the 
polynomial of (# — l) th degree h(x) multiplied by the linear 
function 

(29) Wk(x) = x — Xh* 

Hence §k(x) changes its sign exactly once, at the interpolation 
point Xk* 

The fundamental function hk(x) is equal to the square of 
h(x) multiplied by the linear function 

(30) Vk(x) = 1 —~(x — Xk). 
w\Xk) 

Thus hh(x) also can change its sign only once, at the vanishing 
point Xk of the linear function Vk(x), 

œ'(xk) 
(31) Xh = xk + — — • 
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The point Xk is however, under all circumstances, different from 
Xky since Vk(xk) = 1. If the interpolation points 

(32) 

are given, the points 

(33) X\, X% • • • , Xn 

are uniquely determined. I shall call Xk the conjugate point 
corresponding to the interpolation point Xk. 

Henceforward let the interpolation points Xi, X2, - • • , xn He 
in the interval — l ^ x ^ l , and let x range over this interval 
only. We then obtain the following result: 

The Her mite fundamental polynomials of the first kind are 
non-negative in the whole interval of interpolation — 1 ^ x ^ 1, if 
and only if all the conjugate points Xi, X2, • • • , Xn lie outside 
the interval of interpolation — 1 <x < 1. 

If we now consider the linear functional operation 

n 

(34) H(x) = £ƒ(**)**(*), 

whose meaning is easily discerned, we can make the following 
restatement : 

A necessary and sufficient condition for the positiveness of 
the linear operation (34) for every fixed value of x in the interval 
— l ^ x ^ g l is that the interval — Kx<l be f ree from conjugate 
points. 

By the assumption of the positiveness of a linear functional 
operation (the operation (34)) we are thus led to the classifica
tion of all point-systems xh x2, • • • , xn of the interval — 1 ^ x S 1 
into two classes. To the first class belong those systems 
X\j X2j , Xn 

for which the conjugate points Xi, X2, • • • , Xn 

all lie outside the interval — Kx < 1 ; to the second class belong 
all other systems. 

The importance of this distinction which rests on our postu
late of positiveness of the operation lies primarily in the fact 
that those point-systems xi, #2, • • • , xn which are useful for 
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interpolation and are of greatest mathematical interest belong 
to our first class. 

For instance let Xly X2y > %n be the Tschebyscheff abscissas, 
which present themselves from so many modes of approach. 
They may be obtained by describing a semicircle having as di
ameter the interval from — 1 to + 1 on the #-axis, dividing this 
semicircle into n equal arcs, and projecting the points of bisec
tion of these arcs on the x-axis. 

In this special case it is easily seen that the point Xk conju
gate to Xk is Xk = 1/xk] i.e., Xk is the harmonic conjugate to the 
interpolation point Xk with respect to the points — 1 , + 1 . Since 
the harmonic conjugates to all lie outside the 
interval ( — 1, + 1 ) , it is clear that the Tschebyscheff abscissas 

belong to our first class of point-systems. 
As a second example we choose the point-system which was 

introduced by Gauss in his famous monograph on mechanical 
quadrature by parabolic interpolation. The points of interpola
tion X\, X2, • • • , xn are now the roots of the equation 

(35) Pn(x) = 0, 

where Pn(x) denotes the Legendre polynomial of index n. It is 
readily seen that in this case Xk = (xk + l/xk)/2; that is, the 
conjugate point Xk is half-way between the point of interpola
tion Xk and its harmonic conjugate. But the point of bisection of 
the interval between two conjugate harmonic points always lies 
outside the interval between the fundamental points. The set 
of Legendre-Gauss abscissas thus belongs to our first class of 
point-systems. 

More generally the roots 
XXf X2) j Xn of the equation 

(36) ƒ»(«, (3, x) = 0 

always belong to the first class, provided that Jn{pt, /3, x) de
notes the so-called nth Jacobi polynomial and the parameters 
ce, j3 satisfy the inequalities O^ce^J , O^jS^J. For ce=j3 = | this 
set of roots is that of Gauss, for a =/3 = f that of Tschebyscheff. 
I call attention to a third special case of exceptional interest: 
a = j3 = 0. In this case the points of interpolation are — 1 , + 1 , 
and the n — 2 roots of the equation P n '_ i (x)=0 where Pn-i(x) 
denotes the Legendre polynomial of index n — 1. 
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For infinite sequences of Lagrange and Hermite interpolation 
polynomials of a function, provided the point-systems always 
belong to the first class, it is now possible to state very general 
theorems, all of which can be proved with surprising ease. But I 
cannot dwell further on this important subject. I proceed to my 
third and last topic—mechanical quadrature by parabolic inter
polation. 

6. Mechanical Quadrature. Let f(x) be a function defined and 
Riemann-integrable in the interval — 1 ^x ^ 1. If Xly ^2> y Xn 
again denote n distinct points of the interval — 1 ^x^ 1, then 

n 

(37) L(x) = J2f(xjc)h(x) 
fc=i 

is the corresponding Lagrange parabola and the value of the 
integral 

/

+1 n /» +1 

L(x)dx = £ƒ(**) I h{x)dx 
-i fc=i J-i 

is called the corresponding mechanical quadrature. The fac
tors 

/

+i /»+i /»+i 

h(x)dx, X2 = I fa(x)dx, • • • , Xn= I ln(x)dx, 
the integrals of the Lagrange fundamental functions over the 
interval of quadrature, which depend only on the abscissas 
xi, #2, • • • , xni I call the Cotes numbers. I t is clear that the 
quadrature formula 

(40) Q = Q[f]= !>*ƒ(**) 
fc=l 

again represents a linear functional operation ; and I remark at 
once that it is in general indefinite, i.e., there are both positive 
and negative numbers among the Cotes numbers Xi, X2, • • • , Xn. 
This is true, for instance, if for an infinite set of values of n the 
points xi, X2, • • • , xn divide the interval ( — 1, + 1 ) into n equal 
parts. In this connection I may cite the important investigations 
of Uspensky and Pólya, and I should like to remark that the 
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results of the latter have given a new impulse to this direction 
of study. 

From what has preceded one is led almost involuntarily to a 
new classification of point-systems of the interval 
( — 1, + 1 ) . In the first class are placed those systems xi, x2, • • • , 
xn for which the Cotes numbers Xi, X2, • • • , X» are all non-
negative, in the second class all other systems. 

Does there exist even one single point-system Xi, #2, • • • , xn 

which belongs to the first class? This question is answered in the 
affirmative by the classical result of Gauss, Christoffel, and 
Stieltjes; for the Legendre abscissas the Cotes 
numbers are all positive, i.e., the operation of quadrature is 
positive. I have recently discovered that the Cotes numbers are 
positive also for the Tschebyscheff abscissas; for the Jacobi 
abscissas ifce=/3 = Oora:=j8 = | o r a = i,/3 = 0, and for other sys
tems as well. Subsequently Szegö in an original fashion has 
treated the question of positiveness of the Cotes numbers for the 
most general Jacobi systems. 

Numerous theorems of very general character can now be 
proved with the utmost ease, dealing with point-systems for 
which the operation of quadrature is definite, and with the cor
responding quadratures themselves. I shall mention one such 
theorem : if we have an infinite sequence of such point-systems, 
consisting of more and more points, then the corresponding 
quadratures converge to f_1f(x)dx as n= <x>, if ƒ(#) is bounded 
and Riemann-integrable in the interval. This theorem is a far-
reaching generalization of the theorem of Stieltjes, which enun
ciates the same result on convergence for the special case of the 
Legendre-Gauss point-system. But I consider it remarkable 
that it has apparently been overlooked hitherto that such spe
cial systems, as for instance that of Tschebyscheff, also belong to 
our first category of point systems. 

We have divided point systems of the interval 
— 1 g x ^ 1 sharply into two classes in connection with interpo
lation; we have again divided these systems sharply into two 
classes in a different way in connection with mechanical quadra
ture. May these two classifications be characterised in any 
other way? What relation subsists between the two classifica
tions? I content myself with a mere mention of these problems. 

Just one word more about the case of quadrature. For 
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Fourier and Laplace series and for interpolation the original 
classical expressions (for instance the partial sums of the series, 
the Lagrange polynomials of the interpolation) are indefinite; 
only among the modified expressions (arithmetic means, Her-
mite interpolation polynomials, etc.) do we find those which are 
positive. For quadrature, on the other hand, we have seen that 
the original quadrature, obtained by means of the classical La
grange parabola, is positive, provided the abscissas of the quad
rature belong to a certain well defined class. 

7. Conclusion. I have come to the end of my lecture, to which 
I might as well have given the following title : On the significance 
of the idea of the positive linear operation for harmonic analysis, 
interpolation, and quadrature. I should like to add just one 
brief remark, relating to the whole subject-matter of the lec
ture. In each case we were concerned with a set of linear opera
tions, from which we selected those that were positive, in order 
to arrive at certain goals appropriate to the various theories. 
Is it actually necessary, in order to arrive at these goals, to de
mand that the operations be positive? By no means. In order 
to obtain necessary and sufficient conditions, a consideration of 
absolute values is demanded, as in the familiar work of Le-
besgue in breaking the path for the study of singular integrals. 
Then why have we concerned ourselves so particularly with 
positive operations? Because the most elementary operations 
which we meet at the outset in the three fields are fortunately 
positive. And for another reason as well : if we do not seek com
plete generality, but subject the operations to certain natural 
supplementary restrictions, then positiveness of the operations 
is both necessary and sufficient. 
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