A NOTE ON THE DICKSON THEOREM ON UNIVERSAL TERNARIES*

BY A. A. ALBERT

1. Introduction. A form f with integer coefficients in integer variables is called universal if it represents all positive and negative integers. Evidently, since f is homogeneous, it represents zero for the variables all zero. In case $f=0$ for integral values of the variables not all zero f is called a zero form.
L. E. Dickson \dagger has given a number-theoretic proof of his theorem that every universal ternary quadratic form is a zero form. But his proof is highly technical and consequently quite long and complicated. In the present note I shall give an almost trivial rational proof of Dickson's result. I shall also prove a generalization of his theorem for ternaries over any nonmodular field F.
2. Quadratic Forms over F. Let F be any non-modular field and let $f\left(x_{1}, \cdots, x_{n}\right)$ be an n-ary quadratic form over F. Then we shall call f a zero form if $f=0$ for x_{1}, \cdots, x_{n} in F and not all zero. We shall also say that, if every ρ in F is represented by f for x_{1}, \cdots, x_{n} in F, the form f is universal over F.

It is well known \ddagger that there exists a non-singular linear transformation $x_{i}=\sum a_{i j} X_{j}$ with $a_{i j}$ in F such that
$f\left(x_{1}, \cdots, x_{n}\right) \equiv \phi\left(X_{1}, X_{2}, \cdots, X_{n}\right) \equiv \sum_{i=1}^{r} g_{i} X_{i}{ }^{2}+0 \cdot \sum_{j=r+1}^{n} X_{j}{ }^{2}$,
with $g_{i} \neq 0$ in F. The integer r is the rank of f. Evidently f is a zero form if and only if ϕ is a zero form. But if $r<n$, the form ϕ vanishes for any X_{n} in F, if $X_{1}=\cdots=X_{r}=0$.

Theorem 1. Every n-ary of rank $r<n$ is a zero form. Every n-ary of rank n is equivalent to

$$
g_{1} X_{1}^{2}+g_{2} X_{2}^{2}+\cdots+g_{n} X_{n}^{2}, \quad\left(g_{i} \text { in } F\right)
$$

with g_{i} all not zero.

[^0]3. Proof of the Dickson Theorem. Let $f(x, y, z)$ be a universal ternary. By Theorem 1 either f is a zero form of rank less than three or
\[

$$
\begin{equation*}
f(x, y, z) \equiv \phi(X, Y, Z) \equiv \alpha X^{2}+\beta Y^{2}-\gamma Z^{2} \tag{1}
\end{equation*}
$$

\]

where α, β, γ are rational, $\alpha \beta \gamma \neq 0$, and X, Y, Z are linearly independent rational linear functions of x, y, z. Define
(2) $\delta \equiv \gamma(\alpha \beta)^{-1}, \quad a \equiv \alpha \delta, \quad b \equiv \beta \delta, \quad-a b=-(\alpha \beta \delta) \delta=-\gamma \delta$, so that, for a rational number $\delta \neq 0$,

$$
\begin{equation*}
\delta f \equiv \delta \phi \equiv \psi(X, Y, Z) \equiv a X^{2}+b Y^{2}-a b Z^{2} \tag{3}
\end{equation*}
$$

Write $\delta=\delta_{1} \delta_{2}{ }^{-1}$, where δ_{1} and δ_{2} are integers. Since f is universal, $f(x, y, z)=\delta_{1} \delta_{2}$ for integer x, y, z. Then if $x_{0}=x \delta_{1}^{-1}, y_{0}=y \delta_{1}^{-1}$, $z_{0}=z \delta_{1}{ }^{-1}$, we have $f\left(x_{0}, y_{0}, z_{0}\right)=\delta_{1}^{-2} \delta_{1} \delta_{2}=\delta_{2} \delta_{1}^{-1}=\delta^{-1}$, for rational x_{0}, y_{0}, z_{0}. Hence we have proved the following fact.

Lemma 1. If f is universal, $\phi=\delta^{-1}$ for rational X, Y, Z.
Let then $\delta^{-1}=\phi, \psi=\delta \phi=\delta \delta^{-1}=1=a X^{2}+b Y^{2}-a b Z^{2}$, and write as a consequence

$$
\begin{equation*}
\xi \equiv 1-a X^{2}=b Y^{2}-a b Z^{2} \tag{4}
\end{equation*}
$$

If $\xi=0$, put $\eta=1, \zeta=X$, so that

$$
\psi(\xi, \eta, \zeta)=b \cdot 1^{2}-a b \cdot X^{2}=b\left(1-a X^{2}\right)=b \xi=0
$$

for $\eta \neq 0$, and $\phi=\delta^{-1} \psi$ is a zero form. Hence f is a zero form, since $f=0$ for rational x, y, z not all zero if and only if $f=0$ for integers x, y, z, not all zero, since f is homogeneous.

Let then $\xi \neq 0$, and put $\eta=a(Z-X Y), \zeta=Y-a X Z$, so that

$$
\begin{aligned}
& b \eta^{2}-a b \zeta^{2}= b\left[a^{2}\left(Z^{2}-2 X Y Z+X^{2} Y^{2}\right)\right. \\
&\left.-a\left(Y^{2}-2 a X Y Z+a^{2} X^{2} Z^{2}\right)\right] \\
&=-a b\left[Y^{2}\left(1-a X^{2}\right)-a Z^{2}\left(1-a X^{2}\right)\right] \\
&=-a\left(1-a X^{2}\right)\left(b Y^{2}-a b Z^{2}\right)=-a \xi^{2} \\
& \delta \phi(\xi, \eta, \zeta) \equiv a \xi^{2}+b \eta^{2}-a b \zeta^{2}=0
\end{aligned}
$$

and $\phi(\xi, \eta, \zeta)=0$ for $\xi \neq 0$. Hence again ϕ, and therefore also f, are zero forms, and we have proved the Dickson Theorem. The above proof is a rational proof holding for any field F so we have immediately the following result.

Lemma 2. If a ternary $f(x, y, z)$ with coefficients in F represents the associated quantity δ^{-1}, then f is a zero form.
4. Universal Ternaries over F. We shall now prove the following theorem.

Theorem 2. A non-singular ternary quadratic form over F is universal over F if and only if it is a zero form.

For let f be a zero form, so that $f(x, y, z)=0$ for x, y, z not all zero and in F. Then

$$
\delta \phi \equiv \psi(\xi, \eta, \zeta) \equiv a \xi^{2}+b \eta^{2}-a b \zeta^{2}=0
$$

for ξ, η, ζ not all zero and in F. Let ρ be any quantity of F, $\sigma=\rho \delta$. If $\xi=0$, then $b\left(\eta^{2}-a \zeta^{2}\right)=0$, whence $\eta^{2}=a \zeta^{2}$, so that $\zeta \eta \neq 0$. Thus write $\xi_{0}=\zeta \eta^{-1}$, from which $a \xi_{0}^{2}=1$. Put

$$
X=0, \quad Y=\frac{\sigma+b^{-1}}{2}, \quad Z=\frac{\sigma-b^{-1}}{2} \xi_{0}
$$

so that, since $1=a \xi_{0}^{2}$,

$$
\begin{aligned}
4 \psi(X, Y, Z) & =b\left[\left(\sigma+b^{-1}\right)^{2}-\left(\sigma-b^{-1}\right)^{2} a \xi_{0}^{2}\right] \\
& =b\left[\left(\sigma+b^{-1}\right)^{2}-\left(\sigma-b^{-1}\right)^{2}\right] \\
& =4 b b^{-1} \sigma=4 \sigma, \quad \text { and } \quad \psi=\sigma .
\end{aligned}
$$

Then $\phi=\delta^{-1} \sigma=\rho$ and hence $f=\rho$ for corresponding x, y, z in F.
Next let $\xi \neq 0$. Then $a+b\left(\eta \xi^{-1}\right)^{2}-a b\left(\zeta \xi^{-1}\right)^{2}=0$, and if we write $\eta \xi^{-1}=a \zeta_{0}, \zeta \xi^{-1}=\eta_{0}$, we have $a+a^{2} b \zeta_{0}{ }^{2}-a b \eta_{0}{ }^{2}=0,1=b \eta_{0}{ }^{2}$ $-a b \zeta_{0}{ }^{2}$. Then put

$$
X=\frac{\sigma+a^{-1}}{2}, \quad Y=\frac{\sigma-a^{-1}}{2} a \zeta_{0}, \quad Z=\frac{\sigma-a^{-1}}{2} \eta_{0},
$$

whence

$$
\begin{aligned}
4 \psi(X, Y, Z) & =a\left(\sigma+a^{-1}\right)^{2}+\left(b a^{2} \zeta_{0}{ }^{2}-a b \eta_{0}{ }^{2}\right)\left(\sigma-a^{-1}\right)^{2} \\
& =a\left[\left(\sigma+a^{-1}\right)^{2}-\left(\sigma-a^{-1}\right)^{2}\right]=4 a a^{-1} \sigma=4 \sigma \\
\psi & =\sigma, \quad \phi=\delta^{-1} \sigma=\rho .
\end{aligned}
$$

Hence in this case also $f=\rho$ as desired, so that f is universal.

Conversely let f be universal. Then f represents δ^{-1} and, by Lemma 2, is a zero form. This proves* Theorem 2.

It is well known \dagger that the determinant of the form $\phi(X, Y, Z)$ equivalent to f is $h^{2} d$, where h is the determinant of the transformation. Hence $-\alpha \beta \gamma=h^{2} d$, so that

$$
\delta=\gamma(\alpha \beta)^{-1}=(\alpha \beta \gamma)(\alpha \beta)^{-2}=-d h^{2}(\alpha \beta)^{-2}=-d k^{2}
$$

where k is in F. Then

$$
-d f=\delta k^{-2} \phi=k^{-2} \psi(X, Y, Z)=\psi(\xi, \eta, \zeta)
$$

for $X=k \xi \cdot X=k \eta \cdot Z=k \zeta$. Hence if f represents the negative of its determinant, the form $\psi=-d f=(-d)^{2}$ represents d^{2}, and hence unity, and hence f is a zero form by Lemma 2. We may therefore replace Lemma 2 by the following statement.

Theorem 3. If f is a ternary with non-zero determinant d, then $-d f(x, y, z) \equiv \psi(X, Y, Z) \equiv a X^{2}+b Y^{2}-a b Z^{2}$ for a suitable transformation. Also f is a universal zero form if and only if f represents -d.

In particular the above Theorem 2 holds for the case where $F=R$, the field of all rational numbers. If, however, a is any rational number, then $a=b^{-2} c$, where b and c are integers. Obviously, if $f=a$ for rational x, y, z, then $f=c$ for rational x, y, z. Hence we have proved a partial converse to Dickson's theorem.

Theorem 4. A non-singular ternary quadratic form with integer coefficients is a zero form if and only if it represents all integers for rational values of its variables.

The University of Chicago

[^1]
[^0]: * Presented to the Society, April 15, 1933.
 \dagger See his Studies in the Theory of Numbers, pp. 17-21.
 \ddagger See Dickson, Modern Algebraic Theories, D. 69

[^1]: * It is evident that Theorem 2 is true if it can be proved for forms of type of $\psi(X, Y, Z) \equiv a X^{2}+b Y^{2}-a b Z^{2}$. If $(1, i, j, i j), i^{2}=a, j=b, j i=-i j$, is a generalized quaternion algebra over F, then for $a b \neq 0$, this algebra is either a division algebra or a total matric algebra. If $q=X i+Y j+Z i j$, then $q^{2}=\psi(X, Y, Z)$. Hence, if ψ is a zero form, the algebra Q is not a division algebra and there exists a two-rowed matrix whose square is σ so that ψ represents σ. The converse of Theorem 2 is similarly proved. It is in fact this linear algebra theorem (which has long been known to me) which gave me an immediate proof of Theorem 2 as soon as I discovered the reduction given by (1)-(3).
 \dagger See Dickson, Modern Algebraic Theories, pp. 64-70.

