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A NOTE ON THE DICKSON THEOREM ON
UNIVERSAL TERNARIES*

BY A. A. ALBERT

1. Introduction. A form f with integer coefficients in integer
variables is called universal if it represents all positive and nega-
tive integers. Evidently, since f is homogeneous, it represents
zero for the variables all zero. In case f=0 for integral values
of the variables not all zero f is called a zero form.

L. E. Dicksont has given a number-theoretic proof of his
theorem that every universal ternary quadratic form is a zero
form. But his proof is highly technical and consequently quite
long and complicated. In the present note I shall give an al-
most trivial rational proof of Dickson’s result. I shall also prove
a generalization of his theorem for ternaries over any non-
modular field F.

2. Quadratic Forms over F. Let F be any non-modular field
and let f(x1, - - -, x.) be an n-ary quadratic form over F. Then
we shall call f a zero form if f=0 for %1, - - -, x, in F and not all
zero. We shall also say that, if every p in F is represented by f
for x1, + - -, xn in F, the form f is universal over F.

It is well known] that there exists a non-singular linear trans-
formation x; =) a:;X; with a;; in F such that

f(xl) ] xn) = ¢(X11 X2) Tty Xn) = Zg‘Xlz + 0- E;Xiz’
i=1 J=r+
with g;50 in F. The integer 7 is the rank of f. Evidently fis a
zero form if and only if ¢ is a zero form. But if » <#, the form ¢
vanishes for any X, in F, if X;= - - - =X,=0.
THEOREM 1. Every n-ary of rank r<n is a zero form. Every
n-ary of rank n is equivalent to

aX? + g X? + - - 4+ g X2, (gs in F),

with g; all not zero.

* Presented to the Society, April 15, 1933.
t See his Studies in the Theory of Numbers, pp. 17-21,
} See Dickson, Modern Algebraic Theories, p. 69
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3. Proof of the Dickson Theorem. Let f(x, v, z) be a universal
ternary. By Theorem 1 either f is a zero form of rank less than
three or

) flx, v,2) =¢(X,YV,2) = aX? + Y2 — 422

where «, 8, v are rational, afy 0, and X, Y, Z are linearly in-
dependent rational linear functions of x, y, 2. Define

@) s=(B)l, a=as, b=g5, —ab= — (afd) = — 1,
so that, for a rational number § 0,
3) f=6p=y(X,Y,Z) = aX?+ bY? — abZ®.

Write § = 6:6:71, where §; and §; are integers. Since f is universal,
f(x, v, ) =88, for integer x, v, 2. Then if xo=x061"%, yo=90",
Zo=261_1, we have f(xo, Yo, Zo) =61_25152=6261_1=8‘1, for ra-
tional xo, ¥o, 20. Hence we have proved the following fact.

LeMMA 1. If f is universal, ¢ =61 for rational X, Y, Z.

Let then 6 1=¢, ¢y =0p=00"1=1=aX2+bY2—abZ? and
write as a consequence
4) E=1— aX? = bY? — abZ2.
If £=0, put n=1, { =X, so that

Y(E ) =01 —ab- X2 =b(1 — aX?) =bE=0

for n#0,and ¢ =6~ is a zero form. Hence f is a zero form, since
f=0f{or rational x, y, 2 not all zero if and only if f =0 for integers
x, ¥, 2, not all zero, since f is homogeneous.

Let then £5#0, and put n=e¢(Z—-XY), {=Y—aXZ, so that

b — ab? = bla2(Z2 — 2XVZ + X2V?)
— a(Y? — 2¢XYVZ + a2X%2?)]
= — ab[V2(1 — aX?) — aZ2(1 — aX?)]
= — a(l — aX?)(bY? — abZ?) = — af?,
dp(&, m, §) = ak? + bn® — abi? = 0,

and ¢(£, 1, {) =0 for ££0. Hence again ¢, and therefore also f,
are zero forms, and we have proved the Dickson Theorem. The
above proof is a rational proof holding for any field F so we have
immediately the following result.
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LeMMA 2. If a ternary f(x, v, 2) with coefficients in F represents
the associated quantity 6~1, then f is a zero form.

4. Universal Ternaries over F. We shall now prove the follow-
ing theorem.

THEOREM 2. A non-singular ternary quadratic form over F is
universal over F if and only if it is a zero form.

For let f be a zero form, so that f(x, y, 2) =0 for x, ¥, 2 not all
zero and in F. Then

3 = Y&, §) = at® + bn® — ab* = 0

for &, m, ¢ not all zero and in F. Let p be any quantity of F,
g=pb. If £=0, then d(n%2—al?) =0, whence n2=a{?, so that
{n5%0. Thus write & ={n~!, from which a&=1. Put

e c— b1

X=0, Y = 2 ) Z= 2 %o,

so that, since 1 =a3,

W(X,7,2) = bl(c+ b7 — (¢ — b7)%i¢)
= [,[(cr + 012 — (¢ — b71)2]
= 4bb~'¢ = 4o, and ¥ =o0.

Then ¢ =6-1¢ =p and hence f=p for corresponding «x, y, z in F.

Next let £0. Then a+b(nf1)2—ab({6~1)2=0, and if we
write né~t=a{,, {E~1=10, we have a+a2¢ —abnd =0, 1 =by¢
—ab¢¢. Then put

g+ a1 dg—a! o—a!
X = 5 y ¥V = 2-—a§‘o, Z = 2‘—770,
whence
W(X,Y,Z) = a(c + aV)? + (ba*¢ — abnd)(oc — a')?

al(c 4+ a2 — (¢ — a1)?] = 4aa'o = 4o,
g, ¢ =61 =np.

12

Hence in this case also f =p as desired, so that f is universal.
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Conversely let f be universal. Then f represents 6~* and, by
Lemma 2, is a zero form. This proves* Theorem 2.

Itis well knownt that the determinant of the form ¢(X, ¥, Z)
equivalent to f is h2d, where % is the determinant of the trans-
formation. Hence —afy="hd, so that

8 = y(aB)t = (afpy)(af)™? = — dh*(af)™2 = — dk?,

where kisin F. Then
- df = 6k—2¢' = k—zll/(X, Y: Z) = ‘p(E) n, f),

for X=FkE- X =Fkn-Z=Fk{. Hence if f represents the negative of
its determinant, the form ¢ = —df=(—d)? represents d?, and
hence unity, and hence f is a zero form by Lemma 2. We may
therefore replace Lemma 2 by the following statement.

THEOREM 3. If f is a ternary with non-zero determinant d, then
—df(x,y,2)=¢(X, Y, Z)=aX2+bV2—abZ? for a suitable trans-
formation. Also f is a universal zero form if and only if f repre-
sents —d.

In particular the above Theorem 2 holds for the case where
F =R, the field of all rational numbers. If, however, a is any
rational number, then @ =b%c, where b and ¢ are integers. Ob-
viously, if f=a for rational x, y, z, then f=c for rational x, v, 2.
Hence we have proved a partial converse to Dickson’s theorem.

THEOREM 4. A non-singular ternary quadratic form with in-
teger coefficients is a zero form if and only if it represents all in-
tegers for rational values of its variables.

THE UNIVERSITY OF CHICAGO

* It is evident that Theorem 2 is true if it can be proved for forms of type
of Y(X, ¥, Z)=aX2+b¥V2—abZ2 If (1,4, j, 4j), 4*=a, j=b, ji= —ij, isa gener-
alized quaternion algebra over F, then for abs<0, this algebra is either a divi-
sion algebra or a total matric algebra. If ¢= X7+ Vj+Zij, then ¢?=y(X, ¥, Z).
Hence, if  is a zero form, the algebra Q is not a division algebra and there exists
a two-rowed matrix whose square is o so that ¢ represents o. The converse of
Theorem 2 is similarly proved. It is in fact this linear algebra theorem (which
has long been known to me) which gave me an immediate proof of Theorem 2
as soon as I discovered the reduction given by (1)-(3).

t See Dickson, Modern Algebraic Theories, pp. 64-70.



