ON IRREDUCIBLE SYSTEMS OF ALGEBRAIC DIFFERENTIAL EQUATIONS

BY E. GOURIN

Given two irreducible algebraic manifolds, if the first is a proper sub-manifold of the second, the first is of lower dimensionality than the second.* We prove here an analogous result for systems of algebraic differential equations.

Terminology and notation will be as in Ritt's monograph, Differential Equations from the Algebraic Standpoint. † Let Σ_1 be a non-trivial closed irreducible system. Let the unknowns be $u_1, \dots, u_q, y_1, \dots, y_p$, with the u_i arbitrary unknowns. We prove the following theorem.

THEOREM. If the manifold of the non-trivial closed irreducible system Σ_1 is a proper sub-manifold of the manifold of another such system Σ_2 , then either Σ_2 has a set of arbitrary unknowns of which u_1, \dots, u_q form a proper subset, or u_1, \dots, u_q form a complete set of arbitrary unknowns of the system Σ_2 and, for these arbitrary unknowns, resolvents of Σ_1 are of lower order than those of Σ_2 .

Because Σ_2 holds Σ_1 , and Σ_1 is closed, every form of Σ_2 is contained in Σ_1 . Then, certainly, Σ_2 cannot contain a form involving the u_i alone. Otherwise Σ_1 would contain such a form. Consequently, there exists in Σ_2 a set of arbitrary unknowns of which u_1, \dots, u_q form a subset. This subset is either a proper subset or a full set of arbitrary unknowns of Σ_2 .

Let us assume, then, that this latter condition is satisfied, that is, u_1, \dots, u_q form a complete set of arbitrary unknowns of both systems Σ_1 and Σ_2 .

In order to construct a resolvent of Σ_2 we choose two forms G and Q, with G not in Σ_2 and free of the y_i , such that, for any two distinct solutions of Σ_2 with the same u_i , such that G does not vanish for these solutions, Q yields two distinct functions

^{*} Van der Waerden, Moderne Algebra, vol. 2, p. 63.

[†] Published by this Society, 1932.

[‡] We assume that the associated field contains a non-constant function. This involves no loss of generality.

of x. Having selected two such forms, we adjoin to Σ_2 the form w-Q, where w is a new unknown, and obtain a system, say Λ_2 . It is clear, however, that the above described properties of the forms G and Q with respect to the system Σ_2 will remain undisturbed when tested with respect to the system Σ_1 . Hence, the same forms G and Q may be utilized in the construction of the resolvent of Σ_1 . Accordingly, we adjoin the same form w-Q to Σ_1 , obtaining a system Λ_1 .

Let Ω_1 and Ω_2 be the two systems of forms in w, the u_i , and y_i , which vanish for all solutions of Λ_1 and Λ_2 , respectively. The two systems Ω_1 and Ω_2 are closed and irreducible. Furthermore, any form of Ω_2 is contained in Ω_1 .

We now list the unknowns in Ω_1 in the order u_1, \dots, u_q ; w; y_1, \dots, y_p , and take a basic set for Ω_1

$$(1) A, A_1, \cdots, A_p,$$

in which w, y_1 , \cdots , y_p are introduced in succession and in which A is algebraically irreducible. The equation A = 0 is a resolvent of Ω_1 . Each A_k is a form in w, the u_i , and y_k alone, is of order 0 in y_k , and of the first degree in y_k .

Similarly we proceed with Ω_2 and take a basic set

$$(2) B, B_1, \cdots, B_p,$$

with B algebraically irreducible. Then B=0 is a resolvent of Ω_2 and each B_k is of the same structure as the corresponding A_k .

It is clear that A cannot be of higher order in w than B. Let us assume, then, that A and B are of the same order in w. Let I be the initial of A. Then, for an appropriate non-negative integer t, we have the identity

$$(3) I^t B = AC + D,$$

where C and D are forms in w and the u_i , D being of lower rank in w than A. Since D vanishes for every solution of Ω_1 , D is contained in Ω_1 . Hence $D \equiv 0$.

It follows, therefore, from (3) that $I^{i}B$ is divisible by A. Because A is algebraically irreducible, and I and A are relatively prime, B must be divisible by A. Let $B = A \cdot K$. Then K is a function of x, the form B being algebraically irreducible. This implies that in (1) we may replace A by B, because, in choosing this basic set, we may select for A among the forms of Ω_{1} in-

volving w and the u_i alone, any algebraically irreducible form which is of the least rank in w. Such a form, however, was found to be a member of Ω_2 and hence may be identified with the form B.

 B_1 is contained in Ω_1 . It is reduced with respect to B and, of all such forms in Ω_1 in the u_i , w, and y_1 , it certainly has a lowest rank. Consequently we may replace A_1 , in (1), by B_1 . Continuing, we find that (2) is a basic set for Ω_1 . Then Σ_1 and Σ_2 are identical. This contradiction proves that A is of lower order in w than B and establishes our theorem.

COLUMBIA UNIVERSITY

AXIOM C OF HAUSDORFF AND THE PROPERTY OF BOREL-LEBESGUE*

BY SELBY ROBINSON†

1. Introduction. This is a study in an abstract space (P, K)of the Hausdorff‡ property C which may be expressed in the form the interior of every set is an open set. A point p of the space P is interior to a set V, if p is a point of V and is not a K-point (point of accumulation, limit point) of any subset of C(V). An open set is one all of whose points are interior points. We say that space (P, K) has property B of Hausdorff if and only if any point p which is interior to each of two sets is interior to their logical product; we shall designate as the open set B property, the weaker property: the product of two open sets is an open set. § By the Hausdorff property D we shall mean that any two points are respectively interior to sets which are disjoined, while in the open set D property the points are required to be in disjoined open sets. The Borel and Borel-Lebesgue properties take three non-equivalent forms in spaces not having property C. These three forms coincide if property C is present as do the two forms of property B and of property D. In §3 we consider three

^{*} Presented to the Society, October 29, 1932.

[†] National Research Fellow.

[‡] F. Hausdorff, Grundzüge der Mengenlehre, first edition, 1914, p. 213.

^{\$} Chittenden chose the open set B property as the one to designate as the Hausdorff B property. See Transactions of this Society, vol. 31 (1929), p. 315.