FURTHER MEAN-VALUE THEOREMS*

BY MORRIS MARDEN

The present note is a sequel to my recent article[†] in which certain mean-value theorems due to Weierstrass and Fekete were generalized. The generalizations resulted from replacing a positive real weight-function by one assuming only values in the angular region $0 \leq \arg w \leq \gamma < \pi$. Here the generalizations will be extended in such a manner as to yield analogous theorems in which the weight-function takes on arbitrary real values (Corollary 2, Theorem 3) or more generally any values in the double angle $0 \leq \arg (\pm w) \leq \gamma < \pi$ (Corollary 1, Theorem 3). Incidentally, these extensions yield (as Corollary 3, Theorem 3) the generalization of the Gauss-Lucas theorem which formed the principal result of another paper.[‡]

In what follows we shall denote by f(Z) the point set w = f(z)obtained on letting point z vary over the point set Z; by Δ arg (Z-p) the magnitude of the smallest angle, with vertex at the point p, enclosing the point set Z; by K(Z) the smallest convex region containing set Z, and, finally, by $S(Z, \theta)$ the star-shaped region composed of all points from which the set Z subtends an angle of not less than θ . The regions K(Z) and $S(Z, \theta)$ can also be defined as the loci of all points p which satisfy respectively the inequalities Δ arg $(Z-p) \ge \pi$, Δ arg $(Z-p) \ge \theta$. Obviously, $S(Z, \theta) = S(K(Z), \theta)$ and hence $S(Z, \theta)$ always contains K(Z). Finally, in what follows, the two rectifiable curves

C:
$$z = z(s), a \leq s \leq b;$$
 $\Gamma: \lambda = \lambda(t), \alpha \leq t \leq \beta,$

will serve as the curves of integration, and, unless further qualified, all functions introduced hereafter will be supposed to be continuous on these curves except perhaps for a finite number of finite jumps.

^{*} Presented to the Society, April 15, 1933.

[†] M. Marden, this Bulletin, vol. 38 (1932), pp. 434-441.

[‡] M. Marden, On the zeros of certain rational functions, Transactions of this Society, vol. 32 (1930), pp. 658-668.

THEOREM 1. Let there be given the real numbers m_i and the functions $f_i(z)$ and g(z) with $\Delta \arg g(C) \leq \gamma < \pi$. Then each point σ as defined by the equation

(1)
$$\int_{a}^{b} g(z) \prod_{i=1}^{h} [f_{i}(z) - \sigma]^{m_{i}} ds = 0$$

lies in the region $S[K(f_1(C), f_2(C), \cdots, f_h(C)), (\pi-\gamma)/m]$, where $m = \sum_{i=1}^{h} |m_i|$.

THEOREM 2. Let, in particular, each $f_i(z)$ be a rational function with exactly n_i finite zeros and p_i finite poles, none of the latter lying in the region $S(C, (\pi - \gamma)/n)$, where $n = \sum_{i=1}^{h} |m_i| (p_i + q_i)$ and $q_i = \max(n_i, p_i)$. Then for each value σ as defined by (1) there exists at least one integer $i, 1 \leq i \leq h$, and at least one point z in $S(C, (\pi - \gamma)/n)$, such that $f_i(z) = \sigma$.

Suppose Theorem 1 were not true; that is, suppose that, for some σ and for all i,

$$\Delta \arg \left[f_i(C) - \sigma\right] < \frac{\pi - \gamma}{m}$$
.

Then

$$\Delta \arg \left[f_i(C) - \sigma\right]^{m_i} < \frac{\pi - \gamma}{m} |m_i|$$

and hence

$$\Delta \arg g(C) \prod_{i=1}^{n} [f_i(C) - \sigma]^{m_i} < \pi.$$

Accordingly, the left hand-side of (1) is a sum of vectors each drawn from w = 0 to points on the same side of some line through w = 0. As such a sum cannot vanish, the assumption that Theorem 1 is false contradicts equation (1). Hence Theorem 1 must be true.

Similarly, let us suppose Theorem 2 to be false; that is, writing

$$f_i(z) - \sigma = A_i \frac{(z - a_{i1})(z - a_{i2}) \cdots (z - a_{iq_i})}{(z - b_{i1})(z - b_{i2}) \cdots (z - b_{ip_i})},$$

let us suppose that for all j and k

$$\Delta \arg (C - a_{jk}) < \frac{\pi - \gamma}{n}$$
.

Since we know by hypothesis, for all j and k, that

$$\Delta \arg (C - b_{jk}) < \frac{\pi - \gamma}{n},$$

it would follow that

$$\Delta \arg \left[f_i(C) - \sigma\right] < \frac{\pi - \gamma}{n} (p_i + q_i),$$

and hence

$$\Delta \arg g(C) \prod_{i=1}^{h} [f_i(C) - \sigma]^{m_i} < \pi.$$

Again equation (1) would be contradicted and hence Theorem 2 must be true.

On setting each $m_i = h = 1$, we obtain from Theorem 1 a previous generalization^{*} of Weierstrass' mean-value theorem, and on setting also $\gamma = 0$, we derive his original theorem.[†]

The choice $m_i - 1 = p_i = h - 1 = 0$ for all *i* reduces Theorem 2 to the previous generalization of Fekete's theorems, \ddagger particularly of his following two theorems.

(1) If f(z) is a polynomial of degree n and $f(\alpha) \neq f(\beta), \alpha \neq \beta$, it assumes every value between $f(\alpha)$ and $f(\beta)$, that is, on the line-segment joining $f(\alpha)$ and $f(\beta)$, at least once in S (seg $\alpha\beta$, π/n).

(2) If P(z) is a polynomial of degree n and $P(\alpha) = P(\beta), \alpha \neq \beta$, then P'(z) = 0 at least once in $S(\text{seg } \alpha\beta, \pi/(n-1))$.

The first of Fekete's theorems is analogous to the Bolzano theorem for continuous functions of a real variable. The second Fekete theorem is analogous to Grace's theorem§, that under the same assumptions, P'(z) = 0 at least once in the circle with its center at $(\alpha + \beta)/2$ and with a radius of $\frac{1}{2}|\beta - \alpha| \operatorname{ctn} (\pi/n)$. It is interesting to note that, since the circle of Grace's theorem passes through the centers of the two circles bounding

752

^{*} M. Marden, this Bulletin, loc. cit., p. 435.

[†] Osgood, Lehrbuch der Funktionentheorie, 1923, vol. I, p. 212.

[‡] See this Bulletin, loc. cit., p. 438 and p. 440. Also M. Fekete, Acta Szeged, vol. 1 (1923), pp. 98–100, and vol. 4 (1929), pp. 234–243; Mathematische Zeitschrift, vol. 22 (1925) pp. 1–7; Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 32 (1923), pp. 299–306, and vol. 34 (1926), pp. 220–233. J.v. Sz. Nagy, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 32 (1923), pp. 307–309.

[§] P. J. Heawood, Quarterly Journal of Mathematics, vol. 38 (1907), pp. 84-107.

 $S(\text{seg } \alpha\beta, \pi/(n-1))$, a better approximation to a zero of P'(z) is obtained through use of both Grace's and Fekete's theorems than through either separately.

Theorem 1 may be stated in the following more general form.

THEOREM 3. Let there be given the functions $f_i(z, \lambda)$ and $g(z, \lambda)$ with $\Delta \arg g(C, \Gamma) \leq \gamma < \pi$. Then each point σ defined by the equation

(2)
$$\int_{\alpha}^{\beta} \int_{a}^{b} g(z, \lambda) \prod_{i=1}^{h} [f_{i}(z, \lambda) - \sigma]^{m_{i}} ds dt = 0,$$

lies in

$$S\left[K(f_1(C, \Gamma), f_2(C, \Gamma), \cdots, f_h(C, \Gamma)), \frac{\pi - \gamma}{m}\right],$$

where $m = \sum_{i=1}^{h} |m_i|$.

This theorem may be proved precisely as was Theorem 1.

If in Theorem 3 we specialize $\lambda(t) \equiv 0$ for $\alpha = 0 \leq t \leq 1 = \beta$ and $\lambda(t) \equiv 1$ for $1 < t \leq 2 = \beta$ and f(z, 0) = -f(z, 1) = f(z), and if we let $g_1(z) = g(z, 0)$ and $g_2(z) = g(z, 1)$, we derive the following result.

COROLLARY 1. Let there be given the functions f(z), $g_1(z)$, and $g_2(z)$ with $0 \leq \arg g_i(z) \leq \gamma < \pi$ for i = 1, 2; then the point σ , as defined by the equation

$$\int_{a}^{b} [g_{1}(z) - g_{2}(z)]f(z)ds = \sigma \int_{a}^{b} [g_{1}(z) + g_{2}(z)]ds,$$

lies in

$$S(\pm f(C), \pi - \gamma).$$

This result leads us to a mean-value theorem in which the weight-function g(z) is real, but not necessarily positive. We may indeed define two functions $g_1(z)$ and $g_2(z)$ so that

$$g_1(z) \equiv g(z), \quad g_2(z) \equiv 0, \quad \text{for} \quad g(z) \ge 0,$$

$$g_1(z) \equiv 0, \quad g_2(z) \equiv -g(z), \quad \text{for} \quad g(z) \le 0.$$

These functions $g_1(z)$ and $g_2(z)$ fulfill the requirements of Corollary 1 with $\gamma = 0$ and

$$g_1(z) - g_2(z) = g(z), \qquad g_1(z) + g_2(z) = |g(z)|.$$

The resulting theorem may be stated as follows.

753

1933.]

[October,

COROLLARY 2. Let there be given the complex function f(z) and the real function g(z). Then the point σ , as defined by the equation

$$\int_{a}^{b} g(z)f(z)ds = \sigma \int_{a}^{b} |g(z)| ds,$$

lies in $K(\pm f(C))$.

Finally in Theorem 3 let us specialize as follows:

$$\alpha = 0, \beta = 1, a = 0, b = r \text{ (an integer)};$$

$$z(s) \equiv z_i \text{ for } j - 1 \leq s < j;$$

$$\lambda(t) \equiv 0; \qquad g(z_i, 0) = \alpha_j;$$

$$m_k = 1, \quad f_k(z_j, 0) = a_{jk} \text{ for } 1 \leq k \leq n;$$

$$m_k = -1, \quad f_k(z_j, 0) = b_{jk} \text{ for } n+1 \leq k \leq n+m=h;$$

and thus obtain the following corollary.*

COROLLARY 3. Let α_i be any complex numbers such that for all *i*, $0 \leq \arg \alpha_i \leq \gamma < \pi$, and let a_{jk} and b_{jk} for all *j* and *k* be points of a given convex region K. Then all the zeros of the function

$$\Phi(z) = \sum_{1}^{r} \alpha_{i} \phi_{i}(z),$$

where

$$\phi_i(z) = \frac{(z - a_{i1})(z - a_{i2}) \cdots (z - a_{in})}{(z - b_{i1})(z - b_{i2}) \cdots (z - b_{im})},$$

lie in the region

$$S\left(K,\frac{\pi-\gamma}{m+n}\right).$$

The particular case of this corollary $\gamma = \alpha_i - 1 = n = m - 1 = 0$ yields the theorem that the zeros of the partial fraction sum $\sum_{i}^{r} (z-z_i)^{-1}$ lie in the smallest convex region enclosing the points z_i . As this partial fraction is the logarithmic derivative of the polynomial $f(z) = A(z-z_1)(z-z_2) \cdots (z-z_r)$, this special case is identical with the Gauss-Lucas theorem for the zeros of the derivative of a polynomial.

UNIVERSITY OF WISCONSIN, MILWAUKEE EXTENSION CENTER

^{*} See Marden, Transactions of this Society, loc. cit.