FURTHER MEAN-VALUE THEOREMS*

BY MORRIS MARDEN

The present note is a sequel to my recent article \dagger in which certain mean-value theorems due to Weierstrass and Fekete were generalized. The generalizations resulted from replacing a positive real weight-function by one assuming only values in the angular region $0 \leqq \arg w \leqq \gamma<\pi$. Here the generalizations will be extended in such a manner as to yield analogous theorems in which the weight-function takes on arbitrary real values (Corollary 2 , Theorem 3) or more generally any values in the double angle $0 \leqq \arg (\pm w) \leqq \gamma<\pi$ (Corollary 1, Theorem 3). Incidentally, these extensions yield (as Corollary 3, Theorem 3) the generalization of the Gauss-Lucas theorem which formed the principal result of another paper. \ddagger

In what follows we shall denote by $f(Z)$ the point set $w=f(z)$ obtained on letting point z vary over the point set Z; by Δ arg $(Z-p)$ the magnitude of the smallest angle, with vertex at the point p, enclosing the point set Z; by $K(Z)$ the smallest convex region containing set Z, and, finally, by $S(Z, \theta)$ the star-shaped region composed of all points from which the set Z subtends an angle of not less than θ. The regions $K(Z)$ and $S(Z, \theta)$ can also be defined as the loci of all points p which satisfy respectively the inequalities $\Delta \arg (Z-p) \geqq \pi, \Delta \arg (Z-p) \geqq \theta$. Obviously, $S(Z, \theta) \equiv S(K(Z), \theta)$ and hence $S(Z, \theta)$ always contains $K(Z)$. Finally, in what follows, the two rectifiable curves

$$
C: \quad z=z(s), \quad a \leqq s \leqq b ; \quad \Gamma: \quad \lambda=\lambda(t), \quad \alpha \leqq t \leqq \beta,
$$

will serve as the curves of integration, and, unless further qualified, all functions introduced hereafter will be supposed to be continuous on these curves except perhaps for a finite number of finite jumps.

[^0]Theorem 1. Let there be given the real numbers m_{i} and the functions $f_{i}(z)$ and $g(z)$ with $\Delta \arg g(C) \leqq \gamma<\pi$. Then each point σ as defined by the equation

$$
\begin{equation*}
\int_{a}^{b} g(z) \prod_{\imath=1}^{h}\left[f_{i}(z)-\sigma\right]^{m_{i}} d s=0 \tag{1}
\end{equation*}
$$

lies in the region $S\left[K\left(f_{1}(C), f_{2}(C), \cdots, f_{h}(C)\right),(\pi-\gamma) / m\right]$, where $m=\sum_{1}^{h}\left|m_{i}\right|$.

Theorem 2. Let, in particular, each $f_{i}(z)$ be a rational function with exactly n_{i} finite zeros and p_{i} finite poles, none of the latter lying in the region $S(C,(\pi-\gamma) / n)$, where $n=\sum_{1}^{h}\left|m_{i}\right|\left(p_{i}+q_{i}\right)$ and $q_{i}=\max \left(n_{i}, p_{i}\right)$. Then for each value σ as defined by (1) there exists at least one integer $i, 1 \leqq i \leqq h$, and at least one point z in $S(C,(\pi-\gamma) / n)$, such that $f_{i}(z)=\sigma$.

Suppose Theorem 1 were not true; that is, suppose that, for some σ and for all i,

$$
\Delta \arg \left[f_{i}(C)-\sigma\right]<\frac{\pi-\gamma}{m}
$$

Then

$$
\Delta \arg \left[f_{i}(C)-\sigma\right]^{m_{i}}<\frac{\pi-\gamma}{m}\left|m_{i}\right|
$$

and hence

$$
\Delta \arg g(C) \varliminf_{i=1}^{h}\left[f_{i}(C)-\sigma\right]^{m_{i}}<\pi
$$

Accordingly, the left hand-side of (1) is a sum of vectors each drawn from $w=0$ to points on the same side of some line through $w=0$. As such a sum cannot vanish, the assumption that Theorem 1 is false contradicts equation (1). Hence Theorem 1 must be true.

Similarly, let us suppose Theorem 2 to be false; that is, writing

$$
f_{i}(z)-\sigma=A_{i} \frac{\left(z-a_{i 1}\right)\left(z-a_{i 2}\right) \cdots\left(z-a_{i q i}\right)}{\left(z-b_{i 1}\right)\left(z-b_{i 2}\right) \cdots\left(z-b_{i p_{i}}\right)}
$$

let us suppose that for all j and k

$$
\Delta \arg \left(C-a_{j k}\right)<\frac{\pi-\gamma}{n}
$$

Since we know by hypothesis, for all j and k, that

$$
\Delta \arg \left(C-b_{j k}\right)<\frac{\pi-\gamma}{n}
$$

it would follow that

$$
\Delta \arg \left[f_{i}(C)-\sigma\right]<\frac{\pi-\gamma}{n}\left(p_{i}+q_{i}\right)
$$

and hence

$$
\Delta \arg g(C) \prod_{i=1}^{h}\left[f_{\imath}(C)-\sigma\right]^{m_{i}}<\pi
$$

Again equation (1) would be contradicted and hence Theorem 2 must be true.

On setting each $m_{i}=h=1$, we obtain from Theorem 1 a previous generalization* of Weierstrass' mean-value theorem, and on setting also $\gamma=0$, we derive his original theorem. \dagger

The choice $m_{i}-1=p_{i}=h-1=0$ for all i reduces Theorem 2 to the previous generalization of Fekete's theorems, \ddagger particularly of his following two theorems.
(1) If $f(z)$ is a polynomial of degree n and $f(\alpha) \neq f(\beta), \alpha \neq \beta$, it assumes every value between $f(\alpha)$ and $f(\beta)$, that is, on the linesegment joining $f(\alpha)$ and $f(\beta)$, at least once in $S(\operatorname{seg} \alpha \beta, \pi / n)$.
(2) If $P(z)$ is a polynomial of degree n and $P(\alpha)=P(\beta), \alpha \neq \beta$, then $P^{\prime}(z)=0$ at least once in $S(\operatorname{seg} \alpha \beta, \pi /(n-1))$.

The first of Fekete's theorems is analogous to the Bolzano theorem for continuous functions of a real variable. The second Fekete theorem is analogous to Grace's theorem§, that under the same assumptions, $P^{\prime}(z)=0$ at least once in the circle with its center at $(\alpha+\beta) / 2$ and with a radius of $\frac{1}{2}|\beta-\alpha| \operatorname{ctn}(\pi / n)$. It is interesting to note that, since the circle of Grace's theorem passes through the centers of the two circles bounding

[^1]$S(\operatorname{seg} \alpha \beta, \pi /(n-1))$, a better approximation to a zero of $P^{\prime}(z)$ is obtained through use of both Grace's and Fekete's theorems than through either separately.

Theorem 1 may be stated in the following more general form.
Theorem 3. Let there be given the functions $f_{i}(z, \lambda)$ and $g(z, \lambda)$ with $\Delta \arg g(C, \Gamma) \leqq \gamma<\pi$. Then each point σ defined by the equation

$$
\begin{equation*}
\int_{\alpha}^{\beta} \int_{a}^{b} g(z, \lambda) \prod_{i=1}^{h}\left[f_{i}(z, \lambda)-\sigma\right]^{m i} d s d t=0 \tag{2}
\end{equation*}
$$

lies in

$$
S\left[K\left(f_{1}(C, \Gamma), f_{2}(C, \Gamma), \cdots, f_{h}(C, \Gamma)\right), \frac{\pi-\gamma}{m}\right]
$$

where $m=\sum_{1}^{h}\left|m_{i}\right|$.
This theorem may be proved precisely as was Theorem 1.
If in Theorem 3 we specialize $\lambda(t) \equiv 0$ for $\alpha=0 \leqq t \leqq 1=\beta$ and $\lambda(t) \equiv 1$ for $1<t \leqq 2=\beta$ and $f(z, 0)=-f(z, 1)=f(z)$, and if we let $g_{1}(z)=g(z, 0)$ and $g_{2}(z)=g(z, 1)$, we derive the following result.

Corollary 1. Let there be given the functions $f(z), g_{1}(z)$, and $g_{2}(z)$ with $0 \leqq \arg g_{i}(z) \leqq \gamma<\pi$ for $i=1,2$; then the point σ, as defined by the equation

$$
\int_{a}^{b}\left[g_{1}(z)-g_{2}(z)\right] f(z) d s=\sigma \int_{a}^{b}\left[g_{1}(z)+g_{2}(z)\right] d s
$$

lies in

$$
S(\pm f(C), \pi-\gamma)
$$

This result leads us to a mean-value theorem in which the weight-function $g(z)$ is real, but not necessarily positive. We may indeed define two functions $g_{1}(z)$ and $g_{2}(z)$ so that

$$
\begin{array}{lll}
g_{1}(z) \equiv g(z), & g_{2}(z) \equiv 0, & \text { for } g(z) \geqq 0 \\
g_{1}(z) \equiv 0, & g_{2}(z) \equiv-g(z), & \text { for } \\
g(z) \leqq 0
\end{array}
$$

These functions $g_{1}(z)$ and $g_{2}(z)$ fulfill the requirements of Corollary 1 with $\gamma=0$ and

$$
g_{1}(z)-g_{2}(z)=g(z), \quad g_{1}(z)+g_{2}(z)=|g(z)|
$$

The resulting theorem may be stated as follows.

Corollary 2. Let there be given the complex function $f(z)$ and the real function $g(z)$. Then the point σ, as defined by the equation

$$
\int_{a}^{b} g(z) f(z) d s=\sigma \int_{a}^{b}|g(z)| d s
$$

lies in $K(\pm f(C))$.
Finally in Theorem 3 let us specialize as follows:

$$
\begin{gathered}
\alpha=0, \beta=1, a=0, b=r \text { (an integer) } \\
z(s) \equiv z_{j} \text { for } j-1 \leqq s<j \\
\lambda(t) \equiv 0 ; \quad g\left(z_{j}, 0\right)=\alpha_{j} ; \\
m_{k}=1, \quad f_{k}\left(z_{j}, 0\right)=a_{j k} \text { for } \quad 1 \leqq k \leqq n ; \\
m_{k}=-1, f_{k}\left(z_{j}, 0\right)=b_{j k} \text { for } n+1 \leqq k \leqq n+m=h ;
\end{gathered}
$$

and thus obtain the following corollary.*
Corollary 3. Let α_{i} be any complex numbers such that for all i, $0 \leqq \arg \alpha_{i} \leqq \gamma<\pi$, and let $a_{j k}$ and $b_{j k}$ for all j and k be points of a given convex region K. Then all the zeros of the function

$$
\Phi(z)=\sum_{1}^{r} \alpha_{i} \phi_{i}(z)
$$

where

$$
\phi_{i}(z)=\frac{\left(z-a_{i 1}\right)\left(z-a_{i 2}\right) \cdots\left(z-a_{i n}\right)}{\left(z-b_{i 1}\right)\left(z-b_{i 2}\right) \cdots\left(z-b_{i m}\right)},
$$

lie in the region

$$
S\left(K, \frac{\pi-\gamma}{m+n}\right)
$$

The particular case of this corollary $\gamma=\alpha_{i}-1=n=m-1=0$ yields the theorem that the zeros of the partial fraction sum $\sum_{i}^{r}\left(z-z_{i}\right)^{-1}$ lie in the smallest convex region enclosing the points z_{i}. As this partial fraction is the logarithmic derivative of the polynomial $f(z)=A\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{r}\right)$, this special case is identical with the Gauss-Lucas theorem for the zeros of the derivative of a polynomial.

University of Wisconsin, Milwaukee Extension Center

[^2]
[^0]: * Presented to the Society, April 15, 1933.
 \dagger M. Marden, this Bulletin, vol. 38 (1932), pp. 434-441.
 \ddagger M. Marden, On the zeros of certain rational functions, Transactions of this Society, vol. 32 (1930), pp. 658-668.

[^1]: * M. Marden, this Bulletin, loc. cit., p. 435.
 \dagger Osgood, Lehrbuch der Funktionentheorie, 1923, vol. I, p. 212.
 \ddagger See this Bulletin, loc. cit., p. 438 and p. 440 . Also M. Fekete, Acta Szeged, vol. 1 (1923), pp. 98-100, and vol. 4 (1929), pp. 234-243; Mathematische Zeitschrift, vol. 22 (1925) pp. 1-7; Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 32 (1923), pp. 299-306, and vol. 34 (1926), pp. 220-233. J. v. Sz. Nagy, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 32 (1923), pp. 307-309.
 § P. J. Heawood, Quarterly Journal of Mathematics, vol. 38 (1907), pp. 84-107.

[^2]: * See Marden, Transactions of this Society, loc. cit.

