ON THE SUMMABILITY AND GENERALIZED SUM OF A SERIES OF LEGENDRE POLYNOMIALS*

BY w. C. BRENKE

1. Introduction. The results obtained in this paper are as follows.
(A) The series of Legendre polynomials $\sum n^{p} X_{n}(x)$, where p is a positive integer, is summable (H, p) for $-1<x<1$, and summable $(H, p+1)$ for $-1 \leqq x<1$.
(B) The generalized sum over the range $-1<x<1$ is

$$
\sum_{1}^{\infty} n^{p} X_{n}(x)=-\frac{1}{2(2 y)^{p-1 / 2}}\left|\begin{array}{ccccccc}
2 & 0 & 0 & 0 & \cdots & 0 & 1 \\
y & 2 y & 0 & 0 & \cdots & 0 & 1 \\
A_{2}^{3} & y & 2 y & 0 & \cdots & 0 & 1 \\
A_{3}^{4} & A_{2}^{4} & y & 2 y & \cdots & 0 & 1 \\
\vdots & \vdots & & & . & \vdots \\
\vdots & . & & & . & . \\
A_{p-2}^{p-1} & A_{p-3}^{p-1} \cdots & y & 2 y & 1 \\
A_{p-1}^{p} & A_{p-2}^{p} \cdots & A_{2}^{p} & y & 1
\end{array}\right|
$$

where

$$
y=1-x ; \quad A_{t}^{p}={ }_{p} C_{t}+(-1)^{t}{ }_{p-1} C_{t} ; \quad(p>2) .
$$

2. The Cases $p=0,1,2$. We first obtain these results for $p=0$, 1,2 . Let p be a positive integer, $S_{n, p}$ the sum of the first n terms of the series $\sum n^{p} X_{n}(x), S_{n, p}^{(p)}$ the p th Hölder mean of $S_{n, p}$, and $S^{(p)}$ the limit of this mean for $n \rightarrow \infty$.

The generating function of the Legendre polynomials gives us at once the sum of the convergent series
(1) $\sum_{1}^{\infty} X_{n}(x)=S^{(0)}=[2(1-x)]^{-1 / 2}-1, \quad(-1<x<1)$.

We can readily find $S^{(1)}$ by use of the recursion formula

$$
\begin{equation*}
(2 m+1) x X_{m}=(m+1) X_{m+1}+m X_{m-1} \tag{2}
\end{equation*}
$$

[^0]which we write in the form
$$
2 m x X_{m}=(m+1) X_{m+1}+(m-1) X_{m-1}+X_{m-1}-x X_{m}
$$

Summing from $m=1$ to $m=n$ we obtain, after some reductions, $2(x-1) S_{n, 1}=(1-x) S_{n, 0}+X_{0}-X_{1}+(n+1) X_{n+1}-n X_{n}-X_{n}$. The first mean now gives

$$
\begin{aligned}
2(x-1) S_{n, 1}^{(1)}=(1-x) S_{n, 0}^{(1)}+ & (1-x) \\
& +\left[(n+1) X_{n+1}-X_{1}-S_{n, 0}\right] / n
\end{aligned}
$$

For $n \rightarrow \infty$ we then have

$$
2(x-1) S^{(1)}=(1-x) S^{(0)}+(1-x)
$$

To obtain $S^{(2)}$ we multiply (2) by m and arrange in the form

$$
2 m^{2} x X_{m}=u(m+1) X_{m+1}+v(m-1) X_{m-1}-m x X_{m}
$$

where u and v are quadratic functions of the indicated arguments. Summing and taking two successive mean values we obtain after some reductions

$$
\begin{aligned}
2(x-1) S_{n, 2}^{(2)}= & (1-x) S_{n, 1}^{(2)}+S_{n, 0}^{(2)} \\
& +1-(1 / n) \sum_{r=1}^{n}\left[3 S_{r, 1}-r(r+1) X_{r+1}+S_{r, 0}\right] / r
\end{aligned}
$$

The last term vanishes for $n \rightarrow \infty$. We note also that the existence of the limit of any mean ensures the existence of the same limit for the higher means. Hence for $n \rightarrow \infty$ the preceding equation becomes

$$
2(x-1) S^{(2)}=(1-x) S^{(1)}+S^{(0)}+1
$$

3. Proof of (A) and (B). We shall now show that
(3) $2(x-1) S^{(p)}=(1-x) S^{(p-1)}+\sum_{t=2}^{p-1} A_{t}^{p} S^{(p-t)}+S^{(0)}+1,(p>2)$;
provided that $S^{(r)}$ exists for $r=0,1,2, \cdots, p-1$, and A_{i}^{p}, expressed in terms of binomial coefficients, is

$$
A_{t}^{p}={ }_{p} C_{t}+(-1)_{p-1}^{t} C_{t}
$$

Assuming the existence of the means of order less than p we first prove the following lemma.

Lemma. The means of order p of $n^{p} X_{n}$ and of $(n+1)^{p} X_{n+1}$ have the limit zero for $n \rightarrow \infty$, when $-1<x<1$.

To prove this we multiply (2) by m^{p-1}, express the coefficients of X_{m+1} and X_{m-1} on the right in powers of $m+1$ and $m-1$, respectively, sum from $m=1$ to $m=n$, and write the result in the form

$$
\begin{align*}
& 2(x-1) S_{n, p}=(1-x) S_{n, p-1}+\sum_{t=2}^{p-1} A_{t}^{p} S_{n, p-t}+S_{n, 0} \tag{4}\\
& \quad+X_{0}+n^{p-1}(n+1) X_{n+1}-(n+1)^{p} X_{n}
\end{align*}
$$

Successive application of this formula enables us to write

$$
2(x-1) S_{n, p}=w_{n}+u_{p}(n+1) X_{n+1}+v_{p}(n) X_{n}
$$

where $w_{n}=A_{p} S_{n, 0}+B_{p} X_{0}, A_{p}$ and B_{p} being independent of n, and $u_{p}(n+1), v_{p}(n)$ are polynomials of degree p in the indicated arguments. Denoting the mean of order k of $n^{p} X_{n}$ by $M_{n, p}^{(k)}$, we have

$$
M_{n, p}^{(1)}=S_{n, p} / n
$$

which, by use of the preceding equation, we may write in the form

$$
2(x-1) M_{n, p}^{(1)}=w_{n}^{(1)}+u_{p-1}(n+1) X_{n+1}+v_{p-1}(n) X_{n}
$$

where $w_{n}^{(1)}=\left(w_{n}+C_{p} X_{n+1}+D_{p} X_{n}\right) / n, \quad C_{p}$ and D_{p} being independent of n, and where the coefficients of the last two terms are polynomials of the indicated degree and arguments. We note that $w_{n}^{(1)}$ and all of its means $\rightarrow 0$ when $n \rightarrow \infty$. Proceeding in this way we have

$$
2(x-1) M_{n, p}^{(2)}=w_{n}^{(2)}+u_{p-2}(n+1) X_{n+1}+v_{p-2}(n) X_{n},
$$

and finally

$$
2(x-1) M_{n, p}^{(p)}=w_{n}^{(p)}+u_{0}(n+1) X_{n+1}+v_{0}(n) X_{n},
$$

where each $w_{n}^{(r)}$ and its means $\rightarrow 0$ when $n \rightarrow \infty$. The means of $(n+1)^{p} X_{n+1}$ may be treated similarly.

Corollary 1. The mean of order p of $u_{p}(n+1) X_{n+1}$ and of $v_{p}(n) X_{n}$ approach zero when $n \rightarrow \infty$, for $-1<x<1$.

Corollary 2. For $x=-1$ the mean of order $p+1$ of each of the preceding expressions vanishes when $n \rightarrow \infty$. This follows from $X_{n}(-1)=(-1)^{n}$.

Now (3) is obtained at once by taking the limit of the mean of order p of (4). But the values of $S^{(0)}, S^{(1)}, S^{(2)}$ already found show that (3) holds for $p=3$. Hence it holds for positive integral values of $p>2$.

The result under (B) is obtained by expressing each $S^{(r)}$, ($r=1,2, \cdots, p$), in terms of the sums of lower order by use of (1^{\prime}), ($1^{\prime \prime}$), (3) and solving this system of equations for $S^{(p)}$.

When $x=-1$, Corollary 2 shows that the series $\sum(-1)^{n} n^{p}$ is summable $(H, p+1)$ and a new form is obtained for its sum by putting $y=2$ in the formula under (B).

The University of Nebraska

ERRATA

This Bulletin, volume 37 (1931), pages 759-765:
On page 759 , line 12 , for $P_{1} \equiv P, P_{2}, \cdots \operatorname{read} P \equiv P_{1}, P_{2}, \cdots$.
On page 764 , line 9 , second parenthesis, for $\left(x_{1} x_{2}, x_{2}, x_{1} x_{4}\right)$ read $\left(x_{1} x_{2}, x_{2}^{2}, x_{1} x_{4}\right)$.
On page 764, line 8 from the bottom, second parenthesis, for $\left(z_{2}, z_{3}, \epsilon_{3} z_{4}\right) \mathrm{read}\left(\epsilon z_{2}, z_{3}, \epsilon^{3} z_{4}\right)$.
W. R. Hutcherson

This Bulletin, volume 39 (1933), p. 589 :
Lines 13-14, omit the words: one point of inflexion; and add the sentence: A point of inflexion lies at infinity on each bisector of the angles formed by adjacent cuspidal tangents.
D. C. Duncan

[^0]: * Presented to the Society, November 26, 1932.

