Corollary 1. The mean of order $p$ of $u_{p}(n+1) X_{n+1}$ and of $v_{p}(n) X_{n}$ approach zero when $n \rightarrow \infty$, for $-1<x<1$.

Corollary 2. For $x=-1$ the mean of order $p+1$ of each of the preceding expressions vanishes when $n \rightarrow \infty$. This follows from $X_{n}(-1)=(-1)^{n}$.

Now (3) is obtained at once by taking the limit of the mean of order $p$ of (4). But the values of $S^{(0)}, S^{(1)}, S^{(2)}$ already found show that (3) holds for $p=3$. Hence it holds for positive integral values of $p>2$.

The result under (B) is obtained by expressing each $S^{(r)}$, ( $r=1,2, \cdots, p$ ), in terms of the sums of lower order by use of ( $1^{\prime}$ ), ( $1^{\prime \prime}$ ), (3) and solving this system of equations for $S^{(p)}$.

When $x=-1$, Corollary 2 shows that the series $\sum(-1)^{n} n^{p}$ is summable $(H, p+1)$ and a new form is obtained for its sum by putting $y=2$ in the formula under (B).

The University of Nebraska

## ERRATA

This Bulletin, volume 37 (1931), pages 759-765:
On page 759 , line 12 , for $P_{1} \equiv P, P_{2}, \cdots \operatorname{read} P \equiv P_{1}, P_{2}, \cdots$.
On page 764 , line 9 , second parenthesis, for $\left(x_{1} x_{2}, x_{2}, x_{1} x_{4}\right)$ read $\left(x_{1} x_{2}, x_{2}^{2}, x_{1} x_{4}\right)$.
On page 764, line 8 from the bottom, second parenthesis, for $\left(z_{2}, z_{3}, \epsilon_{3} z_{4}\right) \mathrm{read}\left(\epsilon z_{2}, z_{3}, \epsilon^{3} z_{4}\right)$.
W. R. Hutcherson

This Bulletin, volume 39 (1933), p. 589 :
Lines 13-14, omit the words: one point of inflexion; and add the sentence: A point of inflexion lies at infinity on each bisector of the angles formed by adjacent cuspidal tangents.
D. C. Duncan

