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ON A COVARIANT D I F F E R E N T I A T I O N PROCESS: 
PAPER II* 

BY H. V. CRAIG 

1. Introduction. I t is the purpose of this note to construct 
analogs of the parameters gradient, divergence, and curl, and 
to establish a few of their more salient properties. 

2. Notation. In addition to the notation used in I,f we shall 
employ the symbols | , 6 to indicate ordinary covariant and 
Synge-Taylor differentiation, respectively. 

3. The Invariants. Evidently, if S(xt
 (m)) is a scalar, 

then the quantities S,a are the components of a vector. Like
wise, if V°(x, x\ • • • , * ( m ) ) , Va (Va=f*pVP) are the contra-
variant and covariant descriptions of a vector, and Aap a second 
order tensor, then Va,a is a scalar, Va,p— Vp,a a skew symmetric 
tensor, and Aap,y+Aya,p-\-Apy)Cl a tensor of the third order. 
Furthermore, if n, the dimensionality of the space, is three, and 
€afiy represents the product of |/a^|~1/2 and the corresponding 
component of the contra variant e system, then e01^ V$,y is a 
vector. The symbols ea^y are skew symmetric in each pair of in
dices and el2Z is unity. 

A certain regularity appears if m > 2 or if the affine connec
tion is that of Riemannian geometry, for example, Va,p =fay Vy,p, 
and whenever either of these cases prevails we shall employ a 
special symbolism. Specifically, GS shall represent the vector 
S,a,D V the scalar F % , and if n is three, CV the vector e^y Vpty. 

In virtue of these definitions and the formal equivalence of 
certain of the rules of operation of our process and those of par
tial differentiation, we may take over many of the identities of 
vector analysis; for example, 

CGS E= 0; DCV s 0; G(S + s) s GS + Gs; 

D(SV) E= (GS) • V + SDV; C(SV) s (GS) X V + SCV; etc. 

The first of these relationships suggests the following theorem. 

* Presented to the Society, March 25, 1932. 
t The preceding note, this Bulletin, vol. 37 (1931), p. 731. 
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THEOREM. A necessary and sufficient condition that a function s 
exist such that S,a= Va, is Va,B — V/j,a = 0. 

In proving the sufficiency of this condition (the necessity is 
obvious) we shall simplify the writing by restricting ourselves 
to the case m = 2. The cases m = 3, m>3 are somewhat simpler 
and may be treated as in the following demonstration. 

PROOF. Let us replace the given equations with the equivalent 
set of n homogeneous partial differential equations, 

Aa$ = 0, [Aa = 2<a\ h Va — X 
\ dx'« \ a j dx"° ds) 

in the dependent variable <3> and the 2n + l independent va
riables xf', x", s. Obviously, these equations are independent. If, 
in addition, they are Jacobian complete, that is, if the alter
nants 

/ (A)\ d$ d$ 

(^,)*--(..2{J)~+K,.-
V i a ) / oV'A ds 

vanish, then we may conclude that the set Aa$ = 0 has a solu
tion,* such that $ = 0 may be solved for s. The function s so 
obtained is the required scalar. 

As a matter of fact, a demonstration that the sum — Aa2 {^} 
+Ap2{«} is zero is a part of the proof of the commutative 
property of the differentiation process,f and so (AaAp) <ï> reduces 
to ( V/3,«— Va,a) d$/ds, which vanishes by hypothesis. 

A second theorem,J which indicates a similarity between 
divergence dLndPAaBy,(PAapy=AaB,y+Aya,p+ABy a), and between 
curl and Va,p— Va,a may be stated as follows. 

THEOREM. If AaQ is a skew-symmetric tensor, then the necessary 
and sufficient condition that a covariant vector <£« exist, such that 

* See Goursat, Mathematical Analysis, vol. 2, translated by Hedrick and 
Dunkel, part 2, pp. 265-270; A. Cohen, The Lie Theory of One Parameter 
Groups, pp. 109-111. 

t See I, p. 733. 
{ See L. P. Eisenhart, Condition that a tensor be the curl of a vector, this 

Bulletin, vol. 28 (1922), p. 425. 
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is that 

(2) P,4a/37 = 0. 

PROOF. Let $ i and <E2 be two functions which satisfy the 
equation An — $1,2— $2,1. In virtue of (2) there is a function 
^(x, x', x", s), such that the equality 

dx'<* \ a ) dx"° ds 

holds, for the alternant in question reduces to PAm. Moreover, 
V(x, x', x", s) = 0, s = <£>3 define a function $3, which satisfies the 
required relations 4̂13 = $1,3 — $3,1; ^23 = $2,3 — $3,2. Evidently 
3>4, and other successive $ functions, may be found similarly. 

Finally, we note that if we transform 3>a as a covariant vector, 
then both (1) and (2) will be tensor equations and consequently 
valid in all coordinate systems. 

An additional characteristic of the invariant GS, somewhat 
analogous to a certain property of the gradient, namely, that 
the critical points of z(x, y) are determined by grad 2 = 0, is 
expressed by the following theorem. 

THEOREM. The equation G/(w)(x, x') = 0 determines the extremal 
curves associated with ffdt. 

PROOF. By differentiat ing/^, x') repeatedly with respect to 
the parameter and representing each time with R those terms 
which do not contribute to the corresponding G/(w), we have 

ƒ' = *'«ƒ,« + x"«fa; 

ƒ" = *""(ƒ*« + 2x'tfax0 + x^U) + x'"«fa + R; 

jim) = x(m)«[fxa + m(fay] + *(-H-i)«/a + R9 (m>2). 

Applying our process to the first of these and expanding, we 
obtain 

ƒ,7 = /*T + X'*f*y + X"*fay ~ 2/„/P" { *'« [78, P] + i*"'Apr } . 

But the followings relations hold: 

fofpr = x'ocf^fP'; X>Pfypr = 0 ; X'8x'p[fpsx7 + fypxt - fy8xf>] = 2 / r fJ 

and therefore ƒ ,7 is the Euler tensor, —fxv + (fy)'. Similarly, we 
find th<Hf^\y = m[-fxy+(fy)']. 
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A second application of the process reveals the fact that the 
covariant Euler tensor Ea is a constant with respect to our 
derivative, thus: 

Ea = x"yfay+ x'y%'*[yb,a]9 

Ea,0 = x"ifayfi + 2*'*[70, a] - 2/«,./*p(*/*[7j8, p] + Wyfrrf>) = 0 , 

while 

E«s « (/^JSy),/j = ƒ«*,/* £y = y ^ £ 7 = - f^UeE*. 

Incidentally, the tensor fay
z
fpEy appears in (0Ea),e also, for 

6Ea = (x"yfay)' + 2*"**/a[7«, a] + R 

- {x'^fay + x'yx"[yô, <r]}[x'"[fla, p] + \x"*f„p}f\ 

and consequently 

(flEa),fi = fa?' + X"yfayfi + 2 x , ô [ / 3 5 , a] - { * '" [« /* , 0 ] + * * " * ƒ « * } 

- JJEP/^P - 3 / W / ^ { ^ [ J 8 M , P] + **"'ƒ*,} 

also 

Obviously whenever the components of a tensor do not in
volve x", we may make our derivative applicable by first ap
plying the 6 process. To illustrate, suppose that we have given 
Sx<*> the gradient of a scalar point function, and let us confine 
ourselves to Riemannian geometry—the 6 process in this case 
reduces to Levi-Civita's derivative. Thus, by differentiating 
and employing the relationships dxfy = Ey\ £>,0 = O, we find 

& S > = x'ySa*\y; 62Sxa = (Bx^S ^\y + x'yx'ôSx«\y\j>; 

(62Sx<x)tp = 2 x'yS x<* i y ||S = 2x'yS xy\a\p> 

Finally, it is interesting to note that the curl of 025*« in
volves the Riemann-Christoffel tensor, thus 

(02S£«),p - (0W«0),« = 2x'ySx6Ryap. 
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