A NOTE ON A CERTAIN PROPERTY OF A FAMILY OF CURVES
 BY ALBERT WERTHEIMER

1. Introduction. In studying methods of constructing alignment charts for sets of empirical curves, it was found necessary to consider a certain property of the curves which we will call the closure property. Let C_{1}, C_{2}, and C_{3} be three plane curves such that C_{2} lies between C_{1} and C_{3}; take any point P on C_{2} and make the following sequence of projections. Project P vertically on C_{3} into P_{3}, project P_{3} horizontally on C_{1} into P_{1}, project P_{1} vertically on C_{2} into P_{2}, project P_{2} horizontally on C_{3} into P_{3}^{\prime}, project P_{3}^{\prime} vertically on C_{1} into P_{1}^{\prime}, finally project P_{1}^{\prime} on C_{2} into P^{\prime}. If the points P and P^{\prime} coincide for all points on C_{2}, the three curves are said to have the closure property.
2. Curves with the Closure Property. Now consider the oneparameter family of curves given by

$$
\begin{equation*}
f(y)+g(a) h(x)+k(a)=0 \tag{1}
\end{equation*}
$$

defined in the region $x_{1} \leqq x \leqq x_{2}, y_{1} \leqq y \leqq y_{2}, m \leqq a \leqq n$, where the functions f, g, h, and k are continuous and single-valued, and let a curve C be defined by the equations

$$
x=g(a), \quad y=k(a), \quad(m \leqq a \leqq n)
$$

Then we have the following result.
Theorem. Those sets of three curves of (1), and only those, which correspond to values of a at which a straight line cuts the curve C, have the closure property.

Proof. Consider three curves C_{1}, C_{2}, and C_{3} corresponding respectively to the parametric values a_{1}, a_{2}, and a_{3}. Now take any point $P(x, y)$ on C_{2} and project it into $P^{\prime}(x, y)$ as described above. Making use of (1), we get

$$
f(y)-f\left(y^{\prime}\right)=-\frac{1}{g\left(a_{3}\right)}\left|\begin{array}{lll}
g\left(a_{1}\right) & k\left(a_{1}\right) & 1 \\
g\left(a_{2}\right) & k\left(a_{2}\right) & 1 \\
g\left(a_{3}\right) & k\left(a_{3}\right) & 1
\end{array}\right| .
$$

This determinant will vanish only when the points on the curve C corresponding to the values a_{1}, a_{2}, and a_{3} lie on a straight line. When the determinant vanishes, we have $f(y)=f\left(y^{\prime}\right)$, and hence the points P and P^{\prime} coincide.

If C is a straight line, the determinant vanishes identically and all curves have the closure property. If C is not cut by any straight line in more than two points, then none of the curves have the closure property.

Bureau of Ordnance, U. S. Navy Department

NOTE ON HOMOGENEOUS FUNCTIONALS*

by L. S. KENNISON

The classical formula of Euler for functions homogeneous in n variables is as follows.

Let $f\left(x_{1}, \cdots, x_{n}\right)$ be a differentiable function of the n variables, x_{1}, \cdots, x_{n}, such that

$$
\begin{equation*}
f\left(\lambda x_{1}, \cdots, \lambda x_{n}\right)=\lambda^{p} f\left(x_{1}, \cdots, x_{n}\right) . \tag{1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
x_{1} \frac{\partial f}{\partial x_{1}}+\cdots+x_{n} \frac{\partial f}{\partial x_{n}}=p f\left(x_{1}, \cdots, x_{n}\right) \tag{2}
\end{equation*}
$$

The following analog of this formula for functionals of one variable was proved by E. Freda. \dagger

Let $F|[f(x)]|$ be a functional with a Fréchet differential $\delta F=\int_{0}^{1} F^{\prime}|[f(x)] ; \xi| \delta f(\xi) d \xi+\sum_{1}^{n} A_{s}|[f(x)]| \delta f\left(x_{s}\right)$, where x_{1}, \cdots, x_{n} are points of the interval $(0,1)$, and such that

$$
F|[\lambda f(x)]|=\lambda^{r} F|[f(x)]| .
$$

Then

$$
\left\{\frac{\partial}{\partial \lambda} F|[f(x)(1+\lambda)]|\right\}_{\lambda=0}=r F|[f(x)]|
$$

Theorem 2 of this paper will be a generalization of this theorem of Freda.

The following theorem is classical.

[^0]
[^0]: * Presented to the Society, January 19, 1932.
 \dagger Rendiconti dei Lincei, (5), vol. 24 (1915), p. 1035.

