A NOTE ON A CERTAIN PROPERTY OF A FAMILY OF CURVES

BY ALBERT WERTHEIMER

1. Introduction. In studying methods of constructing alignment charts for sets of empirical curves, it was found necessary to consider a certain property of the curves which we will call the closure property. Let C_1 , C_2 , and C_3 be three plane curves such that C_2 lies between C_1 and C_3 ; take any point P on C_2 and make the following sequence of projections. Project P vertically on C_3 into P_3 , project P_3 horizontally on C_1 into P_1 , project P_1 vertically on C_2 into P_2 , project P_2 horizontally on C_3 into P'_3 , project P'_3 and P' coincide for all points on C_2 , the three curves are said to have the closure property.

2. Curves with the Closure Property. Now consider the oneparameter family of curves given by

(1)
$$f(y) + g(a)h(x) + k(a) = 0,$$

defined in the region $x_1 \leq x \leq x_2$, $y_1 \leq y \leq y_2$, $m \leq a \leq n$, where the functions *f*, *g*, *h*, and *k* are continuous and single-valued, and let a curve *C* be defined by the equations

$$x = g(a),$$
 $y = k(a),$ $(m \le a \le n).$

Then we have the following result.

THEOREM. Those sets of three curves of (1), and only those, which correspond to values of a at which a straight line cuts the curve C, have the closure property.

PROOF. Consider three curves C_1 , C_2 , and C_3 corresponding respectively to the parametric values a_1 , a_2 , and a_3 . Now take any point P(x, y) on C_2 and project it into P'(x, y) as described above. Making use of (1), we get

$$f(y) - f(y') = -\frac{1}{g(a_3)} \begin{vmatrix} g(a_1) & k(a_1) & 1 \\ g(a_2) & k(a_2) & 1 \\ g(a_3) & k(a_3) & 1 \end{vmatrix}$$

This determinant will vanish only when the points on the curve C corresponding to the values a_1 , a_2 , and a_3 lie on a straight line. When the determinant vanishes, we have f(y) = f(y'), and hence the points P and P' coincide.

If C is a straight line, the determinant vanishes identically and all curves have the closure property. If C is not cut by any straight line in more than two points, then none of the curves have the closure property.

BUREAU OF ORDNANCE, U. S. NAVY DEPARTMENT

NOTE ON HOMOGENEOUS FUNCTIONALS*

BY L. S. KENNISON

The classical formula of Euler for functions homogeneous in n variables is as follows.

Let $f(x_1, \dots, x_n)$ be a differentiable function of the *n* variables, x_1, \dots, x_n , such that

(1)
$$f(\lambda x_1, \cdots, \lambda x_n) = \lambda^p f(x_1, \cdots, x_n).$$

Then we have

(2)
$$x_1 \frac{\partial f}{\partial x_1} + \cdots + x_n \frac{\partial f}{\partial x_n} = pf(x_1, \cdots, x_n).$$

The following analog of this formula for functionals of one variable was proved by E. Freda.[†]

Let F|[f(x)]| be a functional with a Fréchet differential $\delta F = \int_0^1 F' |[f(x)]|$; $\xi | \delta f(\xi) d\xi + \sum_{i=1}^n A_i |[f(x)]| \delta f(x_i)$, where x_1 , \cdots , x_n are points of the interval (0, 1), and such that

Then

$$F \mid [\lambda f(x)] \mid = \lambda r F \mid [f(x)] \mid,$$
$$\left\{ \frac{\partial}{\partial \lambda} F \mid [f(x)(1+\lambda)] \mid \right\}_{\lambda=0} = r F \mid [f(x)] \mid.$$

Theorem 2 of this paper will be a generalization of this theorem of Freda.

The following theorem is classical.

^{*} Presented to the Society, January 19, 1932.

[†] Rendiconti dei Lincei, (5), vol. 24 (1915), p. 1035.