
1934-1 A PROPERTY OF FAMILIES OF CURVES 79 

A NOTE ON A CERTAIN PROPERTY 
OF A FAMILY OF CURVES 

BY ALBERT WERTHEIMER 

1. Introduction. In studying methods of constructing align
ment charts for sets of empirical curves, it was found necessary 
to consider a certain property of the curves which we will call 
the closure property. Let Ci, C2, and C3 be three plane curves 
such that C2 lies between C\ and C3; take any point P on C2 

and make the following sequence of projections. Project P 
vertically on Cz into P3 , project P 3 horizontally on C\ into Pi, 
project P i vertically on C2 into P2 , project P 2 horizontally on 
Cz into P 3 , project Pi vertically on C\ into P{, finally project 
P i on C2 into P ' . If the points P and P ' coincide for all points 
on C2, the three curves are said to have the closure property. 

2. Curves with the Closure Property. Now consider the one-
parameter family of curves given by 

(1) f{y) + g(a)h(x) + k(a) = 0, 

defined in the region Xit^x^x2, yi^y^y2, m^a^n, where the 
functions/, g, h, and k are continuous and single-valued, and let 
a curve C be defined by the equations 

x = g(a)> y = k(a), (rnS a ^ n). 

Then we have the following result. 

THEOREM. Those sets of three curves of (1), and only those, which 
correspond to values of a at which a straight line cuts the curve C> 
have the closure property. 

PROOF. Consider three curves Ch C2, and C3 corresponding re
spectively to the parametric values #i, a2, and a3. Now take any 
point P(x, y) on C2 and project it into P ' (x , y) as described 
above. Making use of (1), we get 

gOi) &Oi) 1 I 

g(a2) k(a2) 1 • 

g(az) k(az) 1 I 

Ky) - ƒ ( / ) = 
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This determinant will vanish only when the points on the curve 
C corresponding to the values #i, a2, and az lie on a straight line. 
When the determinant vanishes, we have ƒ (y) =f(yf), and hence 
the points P and P ' coincide. 

If C is a straight line, the determinant vanishes identically 
and all curves have the closure property. If C is not cut by any 
straight line in more than two points, then none of the curves 
have the closure property. 
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The classical formula of Euler for functions homogeneous in 
n variables is as follows. 

Letf(xi, • • • , xn) be a differentiable function of the n variables, 
Xi, - - • , xn, such that 

(1) ffaXl, ' • , X*n) = \Pf(Xl, ' ' ' , Xn). 

Then we have 

df df 
(2) Xi h ' ' ' + Xn = pf(xh • • • , Xn) . 

dx\ dxn 

The following analog of this formula for functionals of one 
variable was proved by E. Freda, f 

Let F\ [f(x)]\ be a functional with a Frêchet differential 
5F=fl

0F' | [ƒ(*)]; € | 8 / ( € ) ^ + Z W . | [ f ( * ) ] I *ƒ(*.), vihere xu 

• • • , xn are points of the interval (0, 1), and such that 

F\ [X/(*)]| = X'F | [fl*)] |. 
Then 

\^F\[f(x)(l+X)]\\ = rF | [ƒ(*)] |. 

Theorem 2 of this paper will be a generalization of this the
orem of Freda. 

The following theorem is classical. 

* Presented to the Society, January 19,1932. 
t Rendiconti dei Lincei, (5), vol. 24 (1915), p . 1035. 


