AN INVOLUTORIAL LINE TRANSFORMATION*

BY J. M. CLARKSON

1. Introduction. Consider a non-singular quadric H, a plane π not tangent to H, and a point O on H but not on π. In the plane π take a Cremona involutorial transformation I_{n} of order n with fundamental points in general position (not necessarily on the curve of intersection of π and H). Project H from O upon π by the projection P. The point transformation $P I_{n} P^{-1}$ is involutorial and leaves H invariant as a whole. A point A on $H \sim(P) B$ on $\pi ; \dagger B \sim\left(I_{n}\right) B^{\prime} ; B^{\prime} \sim\left(P^{-1}\right) A^{\prime}$ on H. Now an arbitrary line t, with Plücker coordinates $y_{i},(i=1, \cdots, 6)$, meets H in two points A_{1}, A_{2} which $\sim\left(P I_{n} P^{-1}\right) A_{1}^{\prime}, A_{2}^{\prime}$. The line $A_{1}^{\prime} A_{2}^{\prime} \equiv t^{\prime}$ shall be called the conjugate of t by the line transformation T, and we write $t \sim(T) t^{\prime}$. Since the point transformation $P I_{n} P^{-1}$ is involutorial, so will the line transformation T be involutorial.
2. Order of the Transformation T. The coordinates of the points A_{1}, A_{2} in which t meets H are quadratic functions of y_{i}; the coordinates of B_{1}, B_{2} are linear in the coordinates of A_{1}, A_{2} and hence are also quadratic functions of y_{i}; the coordinates of $B_{1}^{\prime}, B_{2}^{\prime}$ are functions of degree n in the coordinates of B_{1}, B_{2} and are therefore functions of degree $2 n$ in y_{i}; finally $A_{1}^{\prime}, A_{2}^{\prime}$ have coordinates of degree $2 n$ in y_{i}. The Plücker coordinates of a line are quadratic functions of the coordinates of two points which determine the line, and hence the Plücker coordinates x_{i} of t^{\prime} are of degree $4 n$ in y_{i}. Thus T is of order $4 n$.
3. The Singular Lines of T. Denote by O_{1}, O_{2} the points where the generators g_{1}, g_{2} of H through O meet π. The points $O_{1}, O_{2} \sim\left(I_{n}\right) O_{1}^{\prime}, O_{2}^{\prime} \sim\left(P^{-1}\right) Q_{1}, Q_{2}$. The line $t \equiv Q_{1} Q_{2} \sim(T)$ the entire plane field of lines $\left(g_{1} g_{2}\right)$, since $O_{1}, O_{2} \sim\left(P^{-1}\right) g_{1}, g_{2}$.

Any line t tangent to H meets H in two points coincident at A. The point $A \sim\left(P I_{n} P^{-1}\right) A^{\prime}$, and hence $t \sim(T)$ the pencil of tangents to H at A^{\prime}.

Since $O \sim(P)$ the whole line $O_{1} O_{2} \sim\left(I_{n}\right)$ a curve ρ of order

[^0]$n \sim\left(P^{-1}\right)$ a curve of order $2 n$ with an n-fold point at O, any line through O meeting H again at $A \sim(T)$ a cone of order $2 n$ with vertex A^{\prime} and an n-fold generator $A^{\prime} O$. However, when t is tangent to H at O so that both points of intersection with H coincide there, then $t \sim(T)$ a congruence of lines, bisecants of the curve of order $2 n$ into which ρ is projected by P^{-1}. The order of the congruence is the number of bisecants through an arbitrary point of space, and hence the number of apparent double points of the curve. Since ρ is rational and since also its projection on H by P^{-1} is rational, we have, from an arbitrary point of space,
$$
\frac{(2 n-1)(2 n-2)}{2}-\frac{(n-1)(n-2)}{2}-\frac{n(n-1)}{2}=n(n-1)
$$
apparent double points, and hence the conjugate congruence is of order $n(n-1)$. The class is the number of bisecants lying in an arbitrary plane, which is $n(2 n-1)$.

Denote the regulus to which g_{1} belongs by k_{1} and that to which g_{2} belongs by k_{2}. A line t belonging to $k_{1} \sim(P)$ a line through O_{2} which line $\sim\left(I_{n}\right)$ a curve of order $n \sim\left(P^{-1}\right)$ a curve of order $2 n$ on H. Again we find that $t \sim(T)$ a congruence of order $n(n-1)$ and class $n(2 n-1)$. So also for any line of the regulus k_{2}.

The line $t \equiv g_{1} \sim(P) O_{1} \sim\left(I_{n}\right) O_{1}^{\prime} \sim\left(P^{-1}\right) Q_{1}$, and hence $t \sim(T)$ the pencil of tangents to H at Q_{1} and likewise $t \equiv g_{2}(T)$ the pencil of tangents to H at Q_{2}.
4. The Invariant Lines of T. Let the curve of invariant points of I_{n} be Δ_{m} of order m and genus p. Then $\Delta_{m} \sim\left(P^{-1}\right) \delta_{2 m}$ of order $2 m$ and also of genus p. Any bisecant of $\delta_{2 m}$ is invariant under T, and hence the invariant lines form a congruence of order $m(m-1)-p$ and of class $m(2 m-1)-p$. If I_{n} has q isolated invariant points $R_{1}, R_{2}, \cdots, R_{q}$, they $\sim\left(P^{-1}\right) q$ points S_{1}, S_{2}, \cdots, S_{q} on H, and hence there are ${ }_{q} C_{2}=q(q-1) / 2$ additional invariant lines of T.
5. Special Cases of T when $n=1$. Choose I as the harmonic homology with center R and axis Δ. By taking R and Δ in general position in π, we produce the desired results by replacing n by the number one in the foregoing paragraphs. It is only when we choose R and Δ in special positions with regard to O_{1}, O_{2} that the results must be altered.

Let Δ be the line $O_{1} O_{2}$. The order of T is 4 . Since each point of Δ is invariant under $I, O_{1}, O_{2} \sim(I) O_{1}, O_{2} \sim\left(P^{-1}\right) g_{1}, g_{2}$. Hence every line of the plane field $\left(g_{1} g_{2}\right) \sim(T)$ the whole plane field ($g_{1} g_{2}$).

Any line t through O, meeting H at a second point $A \sim(T)$ the two pencils $A^{\prime} g_{1}, A^{\prime} g_{2}$. A line t tangent to H at $O \sim(T)$ the plane field of lines ($g_{1} g_{2}$).

A line t of the regulus $k_{1} \sim(P)$ a line m in π through $O_{2} \sim(I)$ another line m^{\prime} through $O_{2} \sim\left(P^{-1}\right)$ another generator m_{1} belonging to k_{1}, and thus $t \sim(T)$ the plane field ($m_{1} g_{2}$). Likewise a line t belonging to the regulus $k_{2} \sim(T)$ an entire plane field of lines.

The entire plane field ($g_{1} g_{2}$) and the bundle (O) are invariant as well as singular under T.

Now choose R at O_{1} and Δ in general position in π. Each line through R in π is invariant as a whole under I, and in particular

$$
O_{1} O_{2} \sim(I) O_{1} O_{2} ; \quad O_{1} \sim(I) O_{1} ; \quad O_{2} \sim(I) B_{2}^{\prime}
$$

on $O_{1} O_{2}$. Any line t lying in the plane $g_{1} g_{2}$ meets g_{1}, g_{2} in points A_{1}, A_{2} which points $\sim(P) O_{1}, O_{2} \sim(I) O_{1}, B_{2}^{\prime} \sim\left(P^{-1}\right) g_{1}, O$; hence $t \sim(T) g_{1}$. Since T is involutorial, $g_{1} \sim(T)$ the plane field $\left(g_{1} g_{2}\right) \cdot t \equiv g_{2} \sim(T)$ the pencil of tangents to H at O.

Any line t belonging to the regulus $k_{2} \sim(T)$ the whole plane field $\left(\operatorname{tg}_{1}\right)$. Thus the regulus k_{2} is invariant as well as singular under T. Any line t belonging to the regulus $k_{1} \sim(P)$ a line m through $O_{2} \sim(I)$ a line m^{\prime} through $B_{2}^{\prime} \sim\left(P^{-1}\right)$ the conic H, $O m^{\prime}$. Thus $t \sim(T)$ the plane field $\left(O m^{\prime}\right)$.

The invariant lines of T consist of the plane field $(O \Delta)$, the pencil of tangents to H at O, the generator g_{1} and the regulus k_{2}. A like special case arises when we take R at O_{2} and Δ in general position in π. The results are readily obtained by interchanging the subscripts 1 and 2 in the discussions in the foregoing paragraphs.

By taking R in general position and Δ through O_{1} but not through O_{2}, we have a third special case of T when $n=1$. Now, the point O_{1} is invariant under I but $O_{2} \sim(I) B_{2}^{\prime}$, and $O_{1} O_{2}$ $\sim(I) O_{1} B_{2}^{\prime} \sim\left(P^{-1}\right)$ a generator b_{2} of the regulus k_{2}. Thus any line t passing through O and meeting H at $A \sim(T)$ the pencils $A^{\prime} b_{2}, A^{\prime} g_{1}$. Any line t tangent to H at $O \sim(T)$ the plane field $\left(b_{2} g_{1}\right)$.

Any line t belonging to the regulus $k_{2} \sim(P)$ a line m through $O_{1} \sim(I)$ another line m^{\prime} through $O_{1} \sim\left(P^{-1}\right)$ another generator m_{2} belonging to the regulus k_{2}. Thus $t \sim(T)$ the plane field ($m_{2} g_{2}$). Any line t belonging to the regulus $k_{1} \sim(P)$ a line q through $O_{2} \sim(I)$ a line q^{\prime} through $B_{2}^{\prime} \sim\left(P^{-1}\right)$ the conic $H, O q^{\prime}$. Thus $t \sim(T)$ the plane field $\left(O q^{\prime}\right)$.

The invariant lines of T are the plane field $(O \Delta)$ and the line $O R$. Similarly we have a special case when Δ passes through O_{2} and R is in general position.

A fourth special case of T when $n=1$ is found by taking R at O_{1} and Δ through O_{2}. Both O_{1} and O_{2} are invariant under I but the other points of $O_{1} O_{2}$ are not invariant. A line t through O and meeting H again at $A \sim(T)$ the two pencils $A^{\prime} g_{1}, A^{\prime} g_{2}$. Any line t tangent to H at $O \sim(T)$ the plane field ($g_{1} g_{2}$).

A line t belonging to $k_{2} \sim(T)$ the plane field $\left(\operatorname{tg}_{1}\right)$, and a line t belonging to $k_{1} \sim(P)$ a line m through $O_{2} \sim(I)$ another line m^{\prime} through $O_{2} \sim\left(P^{-1}\right)$ another generator m_{1} of k_{1}. Thus $t \sim(T)$ the plane field $\left(m_{1} g_{2}\right)$.

The invariant lines of T consist of the pencil of tangents to H at O, the plane field $(O \Delta)$, the generator g_{1} and the regulus k_{2}.

By choosing $n>1$ and taking the F-points, the curve Δ, and the P-curves of I_{n} in special relation to O_{1}, O_{2}, we can set up a limitless number of specializations of this transformation.

[^0]: * Presented to the Society, October 28, 1933.
 \dagger The symbol $\sim(P)$ means "corresponds in the transformation P to."

