AN INVOLUTORIAL LINE TRANSFORMATION*

BY J. M. CLARKSON

1. Introduction. Consider a non-singular quadric H, a plane π not tangent to H, and a point O on H but not on π . In the plane π take a Cremona involutorial transformation I_n of order n with fundamental points in general position (not necessarily on the curve of intersection of π and H). Project H from O upon π by the projection P. The point transformation PI_nP^{-1} is involutorial and leaves H invariant as a whole. A point A on $H\sim(P)$ B on π ; $\dagger B\sim(I_n)$ B'; $B'\sim(P^{-1})$ A' on H. Now an arbitrary line t, with Plücker coordinates y_i , $(i=1, \cdots, 6)$, meets H in two points A_1 , A_2 which $\sim(PI_nP^{-1})$ A'_1 , A'_2 . The line $A'_1A'_2 \equiv t'$ shall be called the conjugate of t by the *line transformation* T, and we write $t\sim(T)t'$. Since the point transformation T be involutorial.

2. Order of the Transformation T. The coordinates of the points A_1 , A_2 in which t meets H are quadratic functions of y_i ; the coordinates of B_1 , B_2 are linear in the coordinates of A_1 , A_2 and hence are also quadratic functions of y_i ; the coordinates of B_1' , B_2' are functions of degree n in the coordinates of B_1 , B_2 and are therefore functions of degree 2n in y_i ; finally A_1' , A_2' have coordinates of degree 2n in y_i . The Plücker coordinates of a line are quadratic functions of the coordinates of two points which determine the line, and hence the Plücker coordinates x_i of t' are of degree 4n in y_i . Thus T is of order 4n.

3. The Singular Lines of T. Denote by O_1 , O_2 the points where the generators g_1 , g_2 of H through O meet π . The points O_1 , $O_2 \sim (I_n)O_1'$, $O_2' \sim (P^{-1})Q_1$, Q_2 . The line $t \equiv Q_1Q_2 \sim (T)$ the entire plane field of lines (g_1g_2) , since O_1 , $O_2 \sim (P^{-1})g_1$, g_2 .

Any line t tangent to H meets H in two points coincident at A. The point $A \sim (PI_nP^{-1}) A'$, and hence $t \sim (T)$ the pencil of tangents to H at A'.

Since $O \sim (P)$ the whole line $O_1 O_2 \sim (I_n)$ a curve ρ of order

^{*} Presented to the Society, October 28, 1933.

[†] The symbol $\sim (P)$ means "corresponds in the transformation P to."

 $n \sim (P^{-1})$ a curve of order 2n with an *n*-fold point at O, any line through O meeting H again at $A \sim (T)$ a cone of order 2n with vertex A' and an *n*-fold generator A'O. However, when t is tangent to H at O so that both points of intersection with Hcoincide there, then $t \sim (T)$ a congruence of lines, bisecants of the curve of order 2n into which ρ is projected by P^{-1} . The order of the congruence is the number of bisecants through an arbitrary point of space, and hence the number of apparent double points of the curve. Since ρ is rational and since also its projection on H by P^{-1} is rational, we have, from an arbitrary point of space,

$$\frac{(2n-1)(2n-2)}{2} - \frac{(n-1)(n-2)}{2} - \frac{n(n-1)}{2} = n(n-1)$$

apparent double points, and hence the conjugate congruence is of order n(n-1). The class is the number of bisecants lying in an arbitrary plane, which is n(2n-1).

Denote the regulus to which g_1 belongs by k_1 and that to which g_2 belongs by k_2 . A line t belonging to $k_1 \sim (P)$ a line through O_2 which line $\sim (I_n)$ a curve of order $n \sim (P^{-1})$ a curve of order 2n on H. Again we find that $t \sim (T)$ a congruence of order n(n-1) and class n(2n-1). So also for any line of the regulus k_2 .

The line $t \equiv g_1 \sim (P) O_1 \sim (I_n) O_1' \sim (P^{-1}) Q_1$, and hence $t \sim (T)$ the pencil of tangents to H at Q_1 and likewise $t \equiv g_2(T)$ the pencil of tangents to H at Q_2 .

4. The Invariant Lines of T. Let the curve of invariant points of I_n be Δ_m of order m and genus p. Then $\Delta_m \sim (P^{-1}) \delta_{2m}$ of order 2m and also of genus p. Any bisecant of δ_{2m} is invariant under T, and hence the invariant lines form a congruence of order m(m-1)-p and of class m(2m-1)-p. If I_n has q isolated invariant points R_1, R_2, \cdots, R_q , they $\sim (P^{-1}) q$ points $S_1, S_2,$ \cdots, S_q on H, and hence there are ${}_qC_2 = q(q-1)/2$ additional invariant lines of T.

5. Special Cases of T when n = 1. Choose I as the harmonic homology with center R and axis Δ . By taking R and Δ in general position in π , we produce the desired results by replacing n by the number one in the foregoing paragraphs. It is only when we choose R and Δ in special positions with regard to O_1 , O_2 that the results must be altered. Let Δ be the line O_1O_2 . The order of T is 4. Since each point of Δ is invariant under I, O_1 , $O_2 \sim (I)$ O_1 , $O_2 \sim (P^{-1})$ g_1 , g_2 . Hence every line of the plane field $(g_1g_2) \sim (T)$ the whole plane field (g_1g_2) .

Any line t through O, meeting H at a second point $A \sim (T)$ the two pencils $A'g_1$, $A'g_2$. A line t tangent to H at $O \sim (T)$ the plane field of lines (g_1g_2) .

A line t of the regulus $k_1 \sim (P)$ a line m in π through $O_2 \sim (I)$ another line m' through $O_2 \sim (P^{-1})$ another generator m_1 belonging to k_1 , and thus $t \sim (T)$ the plane field (m_1g_2) . Likewise a line t belonging to the regulus $k_2 \sim (T)$ an entire plane field of lines.

The entire plane field (g_1g_2) and the bundle (O) are invariant as well as singular under T.

Now choose R at O_1 and Δ in general position in π . Each line through R in π is invariant as a whole under I, and in particular

$$O_1 O_2 \sim (I) O_1 O_2; \quad O_1 \sim (I) O_1; \quad O_2 \sim (I) B_2'$$

on O_1O_2 . Any line t lying in the plane g_1g_2 meets g_1 , g_2 in points A_1 , A_2 which points $\sim(P)O_1$, $O_2\sim(I)O_1$, $B_2'\sim(P^{-1})g_1$, O; hence $t\sim(T)g_1$. Since T is involutorial, $g_1\sim(T)$ the plane field $(g_1g_2) \cdot t \equiv g_2\sim(T)$ the pencil of tangents to H at O.

Any line t belonging to the regulus $k_2 \sim (T)$ the whole plane field (tg_1) . Thus the regulus k_2 is invariant as well as singular under T. Any line t belonging to the regulus $k_1 \sim (P)$ a line m through $O_2 \sim (I)$ a line m' through $B'_2 \sim (P^{-1})$ the conic H, Om'. Thus $t \sim (T)$ the plane field (Om').

The invariant lines of T consist of the plane field $(O\Delta)$, the pencil of tangents to H at O, the generator g_1 and the regulus k_2 . A like special case arises when we take R at O_2 and Δ in general position in π . The results are readily obtained by interchanging the subscripts 1 and 2 in the discussions in the foregoing paragraphs.

By taking R in general position and Δ through O_1 but not through O_2 , we have a third special case of T when n=1. Now, the point O_1 is invariant under I but $O_2 \sim (I)B_2'$, and $O_1O_2 \sim (I)O_1B_2' \sim (P^{-1})$ a generator b_2 of the regulus k_2 . Thus any line t passing through O and meeting H at $A \sim (T)$ the pencils $A'b_2$, $A'g_1$. Any line t tangent to H at $O \sim (T)$ the plane field (b_2g_1) .

1934.]

Any line t belonging to the regulus $k_2 \sim (P)$ a line m through $O_1 \sim (I)$ another line m' through $O_1 \sim (P^{-1})$ another generator m_2 belonging to the regulus k_2 . Thus $t \sim (T)$ the plane field (m_2g_2) . Any line t belonging to the regulus $k_1 \sim (P)$ a line q through $O_2 \sim (I)$ a line q' through $B'_2 \sim (P^{-1})$ the conic H, Oq'. Thus $t \sim (T)$ the plane field (Oq').

The invariant lines of T are the plane field $(O\Delta)$ and the line OR. Similarly we have a special case when Δ passes through O_2 and R is in general position.

A fourth special case of T when n=1 is found by taking Rat O_1 and Δ through O_2 . Both O_1 and O_2 are invariant under Ibut the other points of O_1O_2 are not invariant. A line t through O and meeting H again at $A \sim (T)$ the two pencils $A'g_1, A'g_2$. Any line t tangent to H at $O \sim (T)$ the plane field (g_1g_2) .

A line t belonging to $k_2 \sim (T)$ the plane field (tg_1) , and a line t belonging to $k_1 \sim (P)$ a line m through $O_2 \sim (I)$ another line m' through $O_2 \sim (P^{-1})$ another generator m_1 of k_1 . Thus $t \sim (T)$ the plane field (m_1g_2) .

The invariant lines of T consist of the pencil of tangents to H at O, the plane field $(O\Delta)$, the generator g_1 and the regulus k_2 .

By choosing n>1 and taking the *F*-points, the curve Δ , and the *P*-curves of I_n in special relation to O_1 , O_2 , we can set up a limitless number of specializations of this transformation.

CORNELL UNIVERSITY