ON ALGEBRAIC VARIETIES OF k DIMENSIONS IN SPACE OF r DIMENSIONS

BY B. C. WONG

An algebraic k-dimensional variety V_{k} which is the locus of ∞^{k} points and not the locus of $\infty^{k-h} h$-spaces, where $h>0$, possesses numerous characteristics. Certain $2 k$ of these will be regarded as essential and all the others may be expressed in terms of them. Besides the order, n, of the variety, we shall define the other $2 k-1$ essential characteristics in the following manner.

Consider V_{k} as belonging to an r-space S_{r}. A general $(r-k+t)$ space $S_{r-k+t}[1 \leqq t \leqq k]$ of S_{r} intersects V_{k} in a V_{t}. The $\infty^{2 t-1}$ tangent lines of this V_{t} form a variety $W_{2 t}$ of $2 t$ dimensions. Let j_{t} be the order of $W_{2 t}$, that is, the number of tangent lines of V_{t} that meet a given $(r-k-t)$-space of S_{r-k+t}. If V_{t} is projected upon a ($2 t-1$)-space of S_{r-k+t}, the projection will have j_{t} pinch points.

Now an $(r-k+t-1)$-space of S_{r-k+t} intersects the k-dimensional variety V_{t} in a V_{t-1}. If V_{t-1} possesses a conical point, we say that the $(r-k+t-1)$-space is tangent to V_{t}. The number of tangent $(r-k+t-1)$-spaces of V_{t} passing through a given ($r-k+t-2$)-space of S_{r-k+t} is finite. Denote this number by m_{t}. We say that m_{t} is the class of V_{t}. Obviously, $m_{1} \equiv j_{1}$.

Thus, we have defined $2 k$ of the characteristics of the variety $V_{k}: n ; j_{1}, j_{2}, \cdots, j_{k} ; m_{1} \equiv j_{1}, m_{2}, \cdots, m_{k}$. We regard these as essential.

Our present knowledge of k-dimensional varieties is practically nil, except for the case where $k=2$ and for the case where the varieties are loci of $\infty^{1}(k-1)$-spaces. In this note our purpose is to call attention to the fact that, if V_{k} is the complete intersection of $r-k$ hypersurfaces, $k-1$ of the $2 k$ essential characteristics can be expressed in terms of the remaining $k+1$.We find it convenient to express $m_{2}, m_{3}, \cdots, m_{k}$ in terms of n and $j_{1}, j_{2}, \cdots, j_{k}$.

Let the $r-k$ hypersurfaces be of orders $n_{1}, n_{2}, \cdots, n_{r-k}$, respectively. Then $n=n_{1} n_{2} \cdots n_{r-k}$. By the methods of analytic
geometry, we find that the values of the j 's and m 's are, writing α_{i} for $n_{i}-1$,

$$
\begin{gathered}
i_{1}=n \sum \alpha_{1}, \quad j_{2}=n \sum \alpha_{1} \alpha_{2}, \cdots, \quad j_{k}=n \sum \alpha_{1} \alpha_{2} \cdots \alpha_{k} ; \\
m_{2}=n\left(\sum \alpha_{1}^{2}+\sum \alpha_{1} \alpha_{2}\right), \\
m_{3}=n\left(\sum \alpha_{1}^{3}+\sum \alpha_{1}^{2} \alpha_{2}+\sum \alpha_{1} \alpha_{2} \alpha_{3}\right) \\
\cdot \cdots \cdot \cdot \cdot \cdot \cdots \cdot \cdots \cdot \cdot \cdot \cdots \cdot \\
m_{k}=n \sum_{\nu} \sum \alpha_{1}^{\nu_{1} \alpha_{2}{ }^{\nu_{2}} \cdots \alpha_{k}^{\nu_{k}},}
\end{gathered}
$$

where

$$
\nu=\nu_{1}+\nu_{2}+\cdots+\nu_{k}=k .
$$

It is not difficult to see that if we eliminate the α 's from these equations, we have all the m 's expressed in terms of n and the j 's. We shall give the values for a few of the m 's:

$$
\begin{aligned}
n m_{2}= & j_{1}{ }^{2}-n j_{2}, \\
n^{2} m_{3}= & j_{1}{ }^{3}-2 n j_{1} j_{2}+n^{2} j_{3}, \\
n^{3} m_{4}= & j_{1}^{4}-3 n j_{1}{ }^{2} j_{2}+n^{2} j_{2}{ }^{2}+2 n^{2} j_{1} j_{3}-n^{3} j_{4}, \\
n^{4} m_{5}= & j_{1}{ }^{5}-4 n j_{1}{ }^{3} j_{2}+3 n^{2} j_{1} j_{2}^{2}+3 n^{2} j_{1}^{2} j_{3}-2 n^{3} j_{2} j_{3} \\
& -2 n^{3} j_{1} j_{4}+n^{4} j_{5}, \\
n^{5} m_{6}= & j_{1}{ }^{6} \\
& -5 n j_{1}^{4} j_{2}+4 n^{2} j_{1}^{3} j_{3}+6 n^{2} j_{1}^{2} j_{2}^{2}-n^{3} j_{2}^{3}-6 n^{3} j_{1} j_{2} j_{3} \\
& -3 n^{3} j_{1}^{2} j_{4}-2 n^{4} j_{3}^{2}+2 n^{4} j_{2} j_{4}+2 n^{4} j_{1} j_{5}-n^{5} j_{6} .
\end{aligned}
$$

[^0]
[^0]: The University of California

