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and m/n lies between constants which depend on 8. Then it is 
quite easy to prove that 

| <r»*(0) | = | nan(0) - m<rm(6)\/(n - m) ^ MB, 

while your argument shows at once that | Rn(Q) \ é2B +&A, 
where â is small by choice of m/n • • • ."f 

UNIVERSITY OF BUDAPEST 

NOTE ON T H E FORM OF A FIRST-ORDER PARTIAL 
DIFFERENTIAL EQUATIONf 

BY A. B. BROWN 

In this paper we give a simple proof of the fact that the 
non-singular solutions of a first-order partial differential equa
tion can be obtained by equating to zero solutions of an asso
ciated equation in which the dependent variable does not appear 
explicitly. The usual proof § of this property makes extensive 
use of the complete integral, and to be given rigorously would 
require considerations at one stage nearly as involved as our 
entire proof.|| Our proof has no reference to complete integrals. 
The results, as usual, hold in the small. Interest in this question 
arises from the treatments of equations in which the unknown 
does not appear explicitly. 

THEOREM. Letf(xi, - • • t xn, z, pi, • • - , pn) =f(xt z> p) be of 
class C"1[ in a neighborhood of an initial element (a, ô, p°) for 
whichf=0andfPl7^0. Let 

f Professor Fekete, to whom I communicated this letter of Paley in Septem
ber 1933, has worked out completely the proof sketched by Paley. Moreover, 
Fekete generalized considerably Paley's theorem and extended it also to the 
trigonometric series of H. Bohr. 

t Presented to the Society, March 31, 1934. 
§ See, for example, E. Goursat, Équations aux Dérivées Partielles, 1921, 

pp. 48-49 and 159. 
|| A complete integral yielding elements at a given point does not neces

sarily provide any given integral element at the point. 
If A function of class Cw is one having continuous &th partial derivatives. 
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F(xh • • • , xn, z, Pi, • • • , PM+i) 

(1) / _J^ Pu \ 
\ * n+1 Pn+l/ 

Pfeew /fee solutions of class C', with elements near (a, &, />°), 0/ 

(2) f(x, z, p) = 0, witó = £*, (& = 1, • • • , n), 
OXk 

are identical with the loci expressible in the form 

(3) gOi, • • • , xn, z) = 0 

for which 

(4) M = g(xh • • • , #w, 2), g 0/ c/ass C', 

is a solution of 

du 
F(x, z, P) = 0, with Pk = , 

(5) ÔXk 

du 
Pn+l = — 7*0, 

dz 
and with (xu • • • , xn, z, —Pi/Pn+i, • • • , 
(a, &,£°). 

#*^o, 

(* = 1, • • • , n), 

— Pn/Pn+i) near 

It is easily verified that if (4) satisfies (5), then (3) yields a 
solution of (2). Conversely, if (3), with gz^O, satisfies (2), then 
(4) satisfies (5) when g = 0, but not necessarily elsewhere. 

Let a solution of (2) be given in the form 

(6) z = Z(xi, • • • , xn), Z of class C. 

By a change in notation we can assume that b =Z(ai, • • • , an), 
and that dZ(au • • • , an)/dxk=pk°, (4 = 1, • • • , n). Taking 
g(x, z) =Z(x) — z, the concluding sentence of the preceding para
graph shows us that (7) is an integral element of (5) : 

m (*9 *, «, Pi, • • • , Pn, Pn+l) 

= (a, b, 0,ZZl(a, b), • • • ,ZXn(a, b), - 1). 

Note that Pw+i = — 1 ^ 0 , for this element. 
Since FPl= —fPl/Pn+19*0 for (7), the manifold 
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with the integral element (7), determines uniquely an integral 
strip for (5), which in turn determines uniquely a solution of 
the equation (5) :* 

(8) u = G(xh • • • , xn, z), 

where G is of class C7, with 

(9) G(ah x2) - - • , xn, z) = Z(ah x2, • • • , xn) — z. 

We now consider the locus 

(10) G{x, z) = 0 

near (a, b). Since Gz(a, 6) = — 1 ^ 0 , we infer that (10) determines 
a locus which we know satisfies (2). Now the locus 

(11) Xi = ah z = Z(tti, #2, • • • , au , 

with pk—ZXk1 (& = 1, • • • , n), yields an integral strip, say Si, 
for (2), since (6) satisfies (2). But (11), with dz/dxk= —GXJGZ, 
also yields an integral strip, say S2, for (2) ; for (9) shows that 
(11) is the part of the locus (10), obtained by setting Xi=aïf 

and (10) satisfies (2). 
At (a, 6), -GXk/Gz=-Pk/Pn+i = ZXk(a, b), (* = 1, • • - , » ) , 

as we see from (7). Hence £2 has an element in common with 
Si, and as Si and 5 2 both have the locus (11) in (x, z)-space, it 
follows that they are identical. Therefore the solutions of (2) 
determined by them, namely (6) and (10), are likewise identical. 
Recalling that (8) satisfies (5) and that G ^ 0 , we see that 
the theorem is established. 

I t would be interesting to know whether the theorem is 
true in the large. 

COLUMBIA UNIVERSITY 

* See L. Bieberbach, Differentialgleichungen, 3d éd., 1930, pp. 294 ff. The 
argument is in the small throughout. 


