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1. Introduction. From the title of my address you will already 
have observed that it is my intention to discuss with you the 
asymptotic representation of the solutions of certain differ­
ential equations, and that my point in doing this is largely to 
dwell upon the Stokes phenomenon which arises in that theory. 
There are at least two good reasons why I have chosen to do 
this. Firstly, the subject seems to me to have mathematical 
features of distinct interest and perhaps of importance, and, sec­
ondly, it has risen during the last dozen years to a position of 
importance in theoretical physics, both of the more classical 
type and of the modern quantum mechanics. The instance is 
indeed one in which the development of mathematics has not 
merely been hastened by the spur of the needs of growing 
physical theory, but in which investigators primarily or at 
least prominently identified as physicists have turned aside to 
mathematical deductions to fill their own needs. 

The Stokes phenomenon is named after its discoverer, the 
British mathematician and physicist, Sir G. G. Stokes. He was 
confronted by its manifestation in his study of the Bessel func­
tions, and that it held puzzlement and difficulty for him he 
was not loath to acknowledge. With your permission I should, 
indeed, like to read you an abstract from a letter which he 
wrote at the time, as you will conclude, to a certain young 
lady 4 London, March 19/57. "When the cat's away the mice 
may play. You are the cat and I am the poor little mouse. I 
have been doing what I guess you won't let me do when we are 
married, sitting up till 3 o'clock in the morning fighting hard 
against a mathematical difficulty. Some years ago I attacked an 
integral of Airy's, and after a severe trial reduced it to a readily 
calculable form. But there was one difficulty about it which, 

f A symposium lecture delivered by invitation of the program committee 
at the meeting of the Society at Chicago, April 6, 1934. 

X Sir George Gabriel Stokes, Memoirs and Scientific Correspondence, Cam­
bridge, 1907, vol. 1, p. 62. 
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though I tried till I almost made myself ill, I could not get over, 
and at last I had to give it up and profess myself unable to 
master it. I took it up again a few days ago, and after two or 
three days' fight, the last of which I sat up till 3, I at last 
mastered it. • • • " A decade later the phenomenon was ob­
served, again in connection with the Bessel functions, by Han-
kel, who speaks of his investigations as having led to "peculiar 
results which might perhaps serve as a basis for a general theory 
of semi-convergent series," those remarkable developments 
whose true nature was almost entirely unknown.f 

2. The Sturm-Liouville Equation. Let me, to begin with, write 
down the partial differential equation 

d ( dT) dT 
H *(*) — } -q(*)T = p(x) — 
dx\ dx ) dt 

which controls the temperature T in the flow of heat along a 
slender rod in the direction x with time t. The coefficients k, 
p, and q are all essentially positive functions, determined by the 
physical characteristics of the rod and the surrounding medium. 
A familiar mode of procedure toward solving the equation is to 
substitute 

r = ƒ(/)«(*), 

whereupon the equation decomposes into the form 

d / du\ 

fit) dx\ Tx)~qU 

f(t) pu 

In this the left member is a function of / alone and the right 
member is a function of x alone, and the equality therefore im­
plies that each is independent of both x and t, say is equal to a 
quanti ty —X2. I am not interested in the equation in /. The 
equation for the component u(x) is, however, of the form 

d ( du) 

(i) T)k^x)T\ + ^2pM ~ i(*ÏÏu = °> 
dx \ dxj 

f H. Hankel, Die Cylinderfunktionen erster una zweiter Art, Mathematische 
Annalen, vol. 1 (1869), p. 467. 
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in which X2 is independent of x, but may be regarded as a pa­
rameter variable in its own right. The equation (1) is known as 
the differential equation of the Sturm-Liouville type, in recog­
nition of the fundamental work done in connection with it by 
Sturm and Liouville about a century ago. It arises in the mathe­
matical formulation of classical physical problems of such great 
diversity as the flow of heat, the vibrations of strings and mem­
branes, the oscillations of rods and beams, the diffusion of sub­
stances through each other, the distribution of electrical po­
tentials and current densities, the turbulent motions of fluids, 
the tides, etc. Mathematically it is the type equation which 
includes as special cases the differential equations of such stand­
ard functions as the trigonometric functions, the Bessel func­
tions, the Legendre functions, the polynomials of Hermite, 
Tchebycheff, and Laguerre, certain confluent hypergeometric 
functions, the functions of Mathieu, and many others. Much 
more recently it has come into renewed prominence among the 
physicists as a type of the Schrödinger wave equation in the 
theory of quantum mechanics. 

I t is natural under these circumstances that much study has 
been given to the equation in the course of a century, with the 
result that in its present form its theory includes among others 
such beautiful chapters as those on the oscillation and com­
parison of solutions, the boundary problems, the expansion of 
arbitrary functions in series of solutions, the asymptotic forms 
of the solutions for large complex values of the variable, and the 
asymptotic dependence of the solutions upon the parameter X. 
It is to the last two of these, and more particularly to the last 
one, to which I shall confine my considerations. 

If in the form (1) the coefficient k(x) is not zero on a given 
interval, and admits a second derivative, a familiar change of 
dependent variable reduces the equation to the form 

(2) u" + {\2(j>2(x) - xW}« = 0. 

In this </>2 and X2 are written in place of 0 and X only as a matter 
of convenience. There is no presumption that these quantities 
are positive; indeed, for many considerations they need not 
even be real. The form (2) has the advantage of great simplicity 
and will, therefore, be made the immediate basis of our dis­
cussion. 
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To avoid a dissipation of time upon matters which are after 
all of rather a seconda^ interest, I shall assume henceforth 
that where the equation (2) is to be considered its coefficients 
are continuous and, in fact, differentiate to whatever order 
may be required. To keep the discussion within proper bounds I 
shall have to confine myself very largely to real values of x 
and X, and when doing so I shall suppose X positive and shall 
refer to the range of values which x may take on as the interval 
a^x^b. I t is to be understood, however, that unless the con­
trary is stated the possibilities a= — oo , or ô = + <x>, or both, are 
not excluded. 

3. The Asymptotic Solutions when <fi2(x) is Bounded From Zero. 
If 02(x) is real and is bounded from zero on (a, &), we may define 
the root 4>{x) so that (f>/ |</> | is either 1 or i according as 02 is 
positive or negative. The change of variables 

/ = — I |</)|jx, v = | <j>(%) \1,2u, ip = K\<-,—r>, 
K J * I | <j> I ; 

in which K and * may be any constants with respect to x, re­
duces the differential equation to the simple form 

(3) - ^ - {p2 + 0 ^ ) ^ = 0, 

with the variable / ranging over an interval (ta, h) and with 

K2 { </>" 3<£'2Ï 
«i(0 = r L l x + -

K2 j 

2<S> 4 0 2 

Now when \p \ is very large the first of the two terms p2 and 
o)i(i) greatly overshadows the second and effectively minimizes 
its influence. Since in the complete absence of œi(t) the equation 
would be solved by the functions e±pt, the suggestion is evidently 
compelling that the equation as it stands may be solvable, a t 
least approximately, by an expression 

Vn(t,p) = e>*S(f,p), 

with 5 some polynomial in 1/p, say 

a\(t) azit) OLn(t) 

p p pn 
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This expression is found directly to satisfy a differential equa­
tion 

in which © is explicitly the sum of terms 

and this conclusion follows irrespective of what the coefficients 
a3'(t) may be. I t is at once clear, however, that with such coeffi­
cients as fulfill the relations 

(4) al = - c o i , a} = - ( a , _ i « i - a / _ i ) , (j = 2, 3 , • • • , » ) , 

all terms of © but the last vanish. Now the successive deter­
mination of functions aj(t) which do satisfy the relations (4) in­
volves at each step at most a quadrature and is therefore a matter 
of no theoretical difficulty, at least if coi(/) is absolutely inte­
g r a t e over (ta, &). This condition is surely fulfilled if the inter­
val is finite. I t is seen thus how a form Vn may be constructed to 
solve a differential equation 

Vi' - |P 2 + «i(0 + — 17. = 0, 

and since this equation resembles the equation (3) and does so 
the more closely the larger n and \p \ are taken, the presumption 
becomes strong that, with Vn(t, p) determined as indicated, 
the latter is an asymptotic representation of a true solution of 
the equation (3). Inasmuch as this latter equation depends only 
on p2, the same might naturally be expected also of the form 
Vn(t, —p). With proper adjustments these facts can indeed be 
shown.f I shall, however, omit a proof at this point, particu-

t J. Horn, Ueber eine linear e Differentialgleichung zweiter Ordnung mit 
einem willkürlichen Parameter, Mathematische Annalen, vol. 52 (1899), p. 271, 
and other papers by this author of about this date. G. D. Birkhoff, On the 
asymptotic character of the solutions of certain linear differential equations contain­
ing a parameter, Transactions of this Society, vol. 9 (1908), p. 219. O. Blumen-
thal, Ueber asymptotische Integration linearer Differentialgleichungen, etc., 
Archiv der Mathematik und Physik, vol. 19 (1912), p. 136. 
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larly as 1 shall later sketch out considerations in which such a 
proof is effectively included. 

The facts to be noted are that under the conditions assumed 
a pair of solutions v±(t) of the equation (3) exist which fulfill a 
set of relations 

\v±(t)-vn(f,±p)\ < - 4 r l * t ' , | > 

with K some constant and t ranging over the interval (ta, fe), or, 
to summarize in terms of the original variables : 

If(j)2(x) is bounded from zero on (a, b) and the integral 

(5) I \ - + - - ^ 
rh\ x <t>" dx 

converges, then the equation (2) has a pair of solutions u±(x), 
which over the interval (a, b) have the forms 

^ K U l 1 / 2 I «X («X)« 
(6) 

/3n(a?) + €±(a?,X)) 

+ • • • + n+l 

When <£2<0 on (a, 6), the forms (6), with « = 1, show that 
there are solutions representable by the formulas 

(7a) u±(x) =-——e±xf*Md*{l + 0(1/ (JCX))} . 

On the other hand, if </>2>0, a suitable combination of these 
forms yields the representation 

(7b) uy(x) = — | cos f X J <t>dx + y j + 0(1/(*X))| , 

in which y may be any constant. The symbol 0(1 /(KX)) stands 
in each case for a function of x and X which on (a, b) is uni­
formly of the order of 1/(KX) when KX is sufficiently large. 

I have supposed in this statement and throughout that X 
has been taken real and positive. The formal work needs no 
modification when it is thought of as complex. The proof, how-
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ever, requires that the quantity \ijl$dx remain in either a right 
or a left hand half of the complex plane. A representation (6) is, 
to be sure, obtained in either case, but the question of the 
relation between the solutions u which are involved in the two 
cases is left open. 

I need perhaps hardly remark that once the forms (6) are 
known the change of variables used above need no longer be 
taken into account. The coefficients $j(x) may be successively 
determined by substitution of the forms directly into the equa­
tion (2). 

It may at this point be appropriate for me to outline also a 
variation of the procedure above. You will, however, recognize 
it as of only formal and minor significance. If a solution of the 
equation (2) is assumed in the form 

r* 

there results for cr the Riccatti equation 

*' X 

_ + ., + , , _ _ _ 0, 

and if a is taken as a series in 1/X, that is, 

o-O, x) = 2 ^ - T — • > 

the differential equation becomes 

1 1 
Oo2 + 4>2) + — (2am + *o ) + — (2(72Ö-O + o-!2 + a{ - x) 

X X2 

+ ]C —.( °7-i + X) <rn<rn-n = 0. 
/=3 X7 \ n==o / 

By choosing the coefficients <TJ(X) SO as to make the individual 
terms zero, that is, 

1 
(To = ± *</>, 0 * 2 = (<Ti + O!2 — X ) , 

2<r0 
(S) 

o-i - - — ai , ai -
Zö*o Zö"o 

1 ( ' M v \ 
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where j = 3, 4, • • • , the equation is formally solved. This form 
of procedure f is in some vogue among the physicists, to 
whom it is known as part of the so called "Wentzel, Kramers, 
Brillouin," (W.K.B.), method. I shall have occasion to refer to 
this further. 

The formulas (6) each include a function which has been 
designated by €, and which is not specified beyond the state­
ment that it approaches zero as KK becomes infinite. The presence 
of these terms represents, therefore, a certain degree of vague­
ness in the formulas. This is a general characteristic of 
asymptotic representations and is not to be neglected, for to 
do so may easily lead into an utter misuse of the formulas. In 
most actual cases more precise analysis may be made to yield 
specific bounds for the magnitudes of the e terms. With such 
bounds at hand and with a definite margin of permissible error 
given, the condition that the vagueness fall within the allowed 
margin must be looked upon as fixing a lower bound, say N, to 
the values of K\ for which the formulas may be used. In any 
application of them it must then be regarded as a tacit hy­
pothesis that \K\ I ^ N. 

4. Consideration of a Point where 02(#) is Zero. Let us suppose 
now that at a point of the x axis, say at xo, the function </>2(x) be­
comes zero, and to fix the ideas let us suppose that the zero is 
a simple one and that <j>2 changes from negative to positive with 
increasing x. Then in any fixed closed interval on the left of 
but not including Xo there are solutions represented by the forms 
(7a) when K\ is large. Every solution is therefore represented by 
some linear combination of these forms, with coefficients which 
are free from x, and so the solutions are to be characterized as 
of an exponential type. On the other hand, in any closed fixed 
interval on the right of and not including xo, every solution is 
represented by a formula (7b) and so is of an oscillatory type. 
I wish for a moment to focus the attention upon such an in­
terval, let us say for definiteness one on the right of xo, with a 
view toward determining how large the interval (#0, a) must be 
in order that the forms may be valid for x^a. 

The deductions of §3 were built upon the assumption that 

f G. Wentzel, Eine Verallgemeinerung der Quantenbedingungen für die 
Zwecke der Wellenmechanik, Zeitschrift für Physik, vol. 38 (1926), p. 518. 
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\p | was sufficiently large to bring the vagueness of the resulting 
forms within the admissible bounds of error. The symbols * and 
K remained unspecified except that they were to be constant. 
Let us choose these values now as 

•K = XQ, K = I J CJ) I d x . 

The point ta then remains fixed independently of the value a, 
the reasoning used in §3 applies, and the forms (6) are deduci-
ble. Thus the condition under which these forms suitably repre­
sent solutions is that X/£0 \cj> \dx be sufficiently large, and this 
clearly permits the point a to be taken closer and closer to xo 
as X is taken larger and larger. Since the value of £, where 

(9) £ = X I 4>dx, 

increases numerically as x recedes in either direction from 
Xo, it follows that the forms (6) or (7) are usable in intervals in 
which |£ | ^ N. I have, of course, assumed here that the intervals 
are ones on which </>2 is bounded from zero except near XQ. 

With a value of N prescribed, the relation |£ | = N defines two 
points, say X-N<%O and XN>X0. AS we have seen, these points 
depend upon X and approach Xo as 1/X approaches zero. The 
interval (#_#, XN) thus separates any one in which a solution is 
described by a combination of the forms (7a) from one in which 
it is of the form (7b), and hence in this interval the transition 
of a solution from the exponential to the oscillatory type takes 
place. That no information as to the mode of this transition is 
likely to be obtainable from the forms (7) themselves becomes 
immediately evident when it is observed that without exception 
these forms become infinite as Xo is approached. The differ­
ential equation satisfied by their leading terms is found directly 
to be 

(10) D» („ + |x v + ^_^L} l , .o , 
and this, unlike the equation (2), has a singularity at the point 
Xo. The interval (#_#, XN) is, therefore, evidently one in which 
no actual resemblance between the differential equations exists 
to be built upon. 
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It might still seem conceivable that by a passage through 
complex values encircling the point x0 the representation valid 
for x ^ XN might be found to serve also for x S X-N- Such expecta­
tions are shaken, however, when it is observed that if <£2 is 
analytic the same is true of the solutions u(x), whereas the forms 
(6) fail even to be single-valued in the region about XQ. 

5. The Stokes Phenomenon in the Theory of the Bessel Func­
tions. The differential equation for the Bessel functions /„(£), 
considered in the complex £ plane, has two singular points 
located respectively at J = 0 and £ = oo. For large values of |£ | 
asymptotic forms for these functions have been deduced, gener­
ally through the medium of contour integral solutions of the 
equation, and when arg £ is fixed, the functions are accordingly 
known to be represented by formulas 

<u) J^~^{C»HI)+C«'-''F(-T)}• 
where P denotes a formal power series with initial term 1, and 
the coefficients are appropriate constants, f 

Now if the constants C are determined so that the formulas 
are correct, let us say for real positive values of £, then they will 
in general not be correct when £ is negative. More generally 
speaking, if arg£ is allowed to vary, say to increase steadily, 
then it is found that ever and anon the formulas theretofore 
valid cease to remain so, and that to retain them, the coeffi­
cients C+i or C+2 must be changed. This is the Stokes phenom­
enon, and, as I have already indicated, its initial comprehen­
sion was not without difficulty. The functions on the left of 
formulas (11) are after all continuous in arg£, whereas any 
change of a coefficient upon the right has every appearance of a 
discontinuous change in that member of the relation. 

The explanation of the anomaly is nevertheless simple. To 
begin with, it may be observed that when |£ | is large the 
numerical value of e^ varies alternately between the large and 
the very small as arg£ continues to increase. The dominance in 
the expression (11), therefore, passes alternately from the one 
term to the other. From here on I cannot do better than to 
quote directly from Stokes to the following effect : "The way in 

f G. N. Watson, A Treatise on the Theory of Bessel Functions, 1922, p. 202. 
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which the paradox • • • is explained is this. A semiconvergent 
series (considered numerically, and apart from its analytic 
form) defines a function only subject to a certain amount of 
vagueness which is so much the smaller as the modulus of the 
variable • • • is larger. • • • For critical values of 6 [that is, arg£] 
the vagueness of the superior function becomes sufficient to swal­
low up the inferior function. As 6 passes through the critical val­
ue the inferior term enters as it were into a mist, is hidden for 
a little from view, and comes out with its coefficient changed." 

I t is evident at once that the first term in formulas (11) over­
shadows the second in the lower half-plane, and that the con­
verse is true in the upper half-plane. We may think, therefore, of 
certain lines extending from the origin to oo, one in each upper 
and lower half-plane, in crossing which the coefficients are to be 
changed. I shall refer to them as Stokes' lines. The precise loca­
tion of such a line is never a matter of importance, since the term 
which is overshadowed remains so in a sector of which the axis 
of imaginaries is the bisector and which may be anything 
definitely less than T in magnitude. 

Finally, I shall record for subsequent use two sets of constants 
which are appropriate to the formulas (11) when J> = 1 / 3 , 
namely, 

C±1 = ^ ( - i / 4 T i / 6 ) ? C±2 = ^ « i / t t i / e ^ ( ~ 7T < arg ? < TT); 

a ) c±1 = <>™(-i/4+i/2)? C±2 = « 'Wt t i /e^ (0 < arg ^ < 2 T ) . 

6. A Particular Differential Equation. Perhaps the simplest 
equation of the type (2) in which <j>2(x) has a zero, is the differ­
ential equation 

(12) y" + XVy = 0. 

It is explicitly solved by the functions 

2 
(13) y±(x) = *1 / 2 /± i / 3(ê) , with £ = — X*3'2. 

Ô 

Its study, because of this, involves a minimum of difficulties 
with a maximum of explicitness, which accounts largely for the 
fact tha t the equation has come to play a rather central role 
in the general theory. I shall devote the present section to a dis­
cussion of it. 
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If rj is constant with respect to x, and is arbitrary except that 
it is restricted to the range —T/2<TJ^T/2, the formula 

/ 27T\ 1 / 2 ( /7T \ 
yv(x) = ^ X 1 / 6 ^ j j £1 / 3 jcos(^y - vy-i,z{& 

(14) 

+ cos 

in which ^r = (2/3)1/6, gives, except for a constant factor, the 
general solution of the differential equation. When x is real and 
positive the same is true of £; while negative values of x, say 
arg x = ir, yield values of £ for which arg £ = 37r/2, namely, i% 
= |£ |. The first and second of the sets of coefficients (11a) are, 
therefore, to be associated respectively with the positive and 
negative values of x in the applications of the formulas (11). 
In the case at hand, that is, of equation (12), the point Xo is the 
origin and the points at which |£ | =N are x+# = (3iV/(2\) )2/3. 

From the formulas (11), the asymptotic representations of 
yr,(x) are found to be as follows: when x^x-Nl 

(14a) 

-—{—Cnr)}>-+ «i 
and when X^XN, 

(14b) , , («) = - L { c o s ( ? - - 1 + , ) + o ( { ) } , 

and these involve a number of features which are worth noting. 
To begin with, it is clear from (14a) that as x—>— oo , and hence 
|̂  | —>+ oo, the solutions with just one exception become in­

finite. The exceptional one is that for which rj = 0, that is, ^o(x), 
and this approaches the limit zero. It is the only solution which 
is bounded for all values of x. 

Like all asymptotic representations the formulas (14) involve 
an element of vagueness in the presence of the terms designated 
by 0 ( l / £ ) . These terms are largest at the point X-N or XN, as the 
case may be, and if the formulas are to be taken as specific or 
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explicit to a high degree, and this is indeed a tacit assumption 
when only the leading terms are explicitly written down, then 
it may be inferred that N is large and the terms 0(1 /£) so small 
whenever |£ | ^N that they are for most purposes negligible. 

Let us consider the case in which 775̂ 0 and is such that at 
some point x_r, where X-T<X~NI the relation 

1 
(15) tan 77 = — <r2l€-r(*)i 

is fulfilled. Then at this point the explicit parts of the two terms 
in formula (14a) are equal. As x moves thence to the right, the 
second term rises rapidly to dominance and its margin of vague­
ness soon swallows up the first term entirely. As x moves to the 
left, on the other hand, the second term rapidly diminishes and 
is soon submerged in the margin of vagueness of the dominant 
first term. With the possible exception of the immediate neigh­
borhood of the point X-T, the graph of the solution accordingly 
falls when X<X-T, and rises on the interval X„T<XSX-N> The 
subscript T was chosen to suggest X-T as such a point of transi­
tion. 

An interval (X-T, X-N) evidently exists only if 77 is small 
enough to satisfy a relation (15), that is, if 77 < 770, where 

1 
(15a) tan 770 = —e~m. 

If we agree to think of X-T as coincident with X-N when 77 ^ 770, 
and likewise to think of X-T as — 00 when 77 = 0, the description 
of the solutions given in (14a) and (14b) may be recast into the 
form 

sin 77 , 1 1 * 
(16a) yn{x) = T ~ T — « l € ,{l + 0 ( 1 / { ) } , when x < x„T, 

4> \ ' 

(16b) y,{x) = - ^ - «Hti {1 + 0(1/ I { I )}, 
2 I <t>\ ' 

w h e n X-T < % ̂  X - N , 

( l + 0 ( l / £ 2 ) } / T \ 
(16c) y,(x) = -i ) / cos ( * - - + „ + 0(1 / « J , 

w h e n x ^ XN, 
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The formula (16c) is readily identified as equivalent to (14b). 
I have written </>1/2 in place of x114, inasmuch as the equation (12) 
is of the type (2) with </>2 = x. 

It is of some interest to note the inferences which can be 
drawn, especially with regard to the phase constant rj, from the 
mere existence of representations identifiable with the ones thus 
given. 

INFERENCE 1. If a solution y(x) is of the form (16b) for all 
x^X-Nj then rj = 0. 

INFERENCE 2. If a solution y(x) is of the form (16b) in some 
interval adjacent to X-N, then rj<rjo. 

INFERENCE 3. If a solution y{x) is of the form (16a) for 
XI^X-N, t h en 77^770. 

INFERENCE 4. Since by taking x sufficiently large the margin 
of vagueness of formula (16c) may be reduced to any degree, 
a representation (16c) determines rj and therefore the appropri­
ate corresponding representations (16a) and (16b). 

The differential equation 

(17) y" + \2xvy = 0, 

which is more general than (12), is likewise explicitly solvable, 
namely, by the functions 

(17a) y± = xVV±1/(v+2)®, with £ = — — X^+2)/2# 

v + 2 

A discussion of it proceeds in a manner similar to that of equa­
tion (12) which has been given, and may be made the basis of 
the deductions concerning the general equation (2) when 02(x) 
becomes zero to the degree v. The index v need not be an integer, 
but may be any real non-negative constant. In particular, the 
case v = 0 is that in which 02 is always of the same sign. 

7. The Method of Jeffreys and Kramers. The first attack upon 
the equation (2) with x ranging over an interval upon which 
</>2(x) has a zero was made, so far as I know, by Jeffreys in 1923.f 

f H. Jeffreys, On certain approximate solutions of linear differential equations 
of the second order, Proceedings of the London Mathematical Society, (2), vol. 
23 (1923), p. 428. 
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He was led to it in an investigation of the oscillations of surfaces 
of water, his particular problem leading to the Mathieu equa­
tion 

u" + (R- 2h2 cos 2x)u = 0. 

When \R\ <2h2
y and x is on a suitable interval, this is evidently 

an equation of the type(2). I shall sketch out Jeffreys' procedure, 
which he restricts to the case in which the zero of cj>2{x) is simple 
and in which x W = 0, that is, to the equation 

(2a) u" + \yO)w = 0. 

There is no objection to taking the origin at the zero of </>2, 
nor to supposing that the positive x direction is chosen so that <f>2 

has always the same sign as x. Finally, the slope of <j>2(x) at 
the origin may be taken as unity since this merely fixes the 
specification of X2. I t is to be made a hypothesis now that in a 
neighborhood of the origin the function </>2(#) is represented with 
sufficient accuracy by a linear function. With the normalization 
agreed upon above this linear function will, of course, be x it­
self, and for small values of x we have %=\J*4>(x)dx = (2/3)Xx3/2, 
approximately. At the same time the differential equation (2a) 
is approximated by the equation (12) of §6, namely, 

(12) y" + \2xy = 0. 

Now when x is negative and sufficiently large the solutions of 
both the equations (2a) and (12) are asymptotically represent-
able, as is shown by the formulas (7a) and (16). We are led, 
therefore, to write 

(18a) 
"-<*> ~JÏ\^ «~m S o l J^ e-w^ ~ 2,„(*), 

On the other hand, when the origin has been traversed and x 
is sufficiently removed therefrom on the positive side, the 
formulas (16c) and (7b) lead to 
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2 / 2 TT 
2y0(%) ~ cos [ — \x3/2 

= 2 

approx ^ 
(18b) 2 

2>/e(«) ~ — - cos 

The sequence of relations (18a) through (18b) is taken to supply 
the linear connections between the solutions of the formulas 
(7a) and (7b). These connections Jeffreys indicates in the form 

2 / T \ 
* —7 cos I £ , 

Ï1'2 \ 4 / 
2 / 7T\ 

-> cos ( £ if, 
01'2 V 12/ 

where, to quote him: "the sign < > is used to indicate that 
the functions it connects are asymptotic approximations to 
the same function in different circumstances." 

The method seems to me to be very simple and ingenious. 
There are, however, a number of points involved in it which will 
bear discussion. To begin with, the proper use of the symbol 
~ is inevitably accompanied by the tacit assumption that x is 
sufficiently removed from the origin, that is, to resort to our ear­
lier notation, that x S X-N or x ^ XN< The interval to be shunned, 
namely (X-N, XN), depends in length upon the magnitude of 
the permitted margin of vagueness in the representations, and 
is to be shortened only at the expense of precision. As against 
this, the proper use of the symbol approx is subject to the con­
tingency that \x\ is sufficiently small, let us say for definiteness 
tha t X-k^x^xjc. The length of this interval is limited by the 
hypothesis that within it the difference between cj>2(x) and the 
linear approximating function be sufficiently small to keep 

t Through an evident slip Jeffreys obtained on the right of this formula the 
incorrect form (2/01 '2) cos (£-57r/12). 

- 7 > 2uT/i{x), 

( — Xx3'2 - — ) 
\ 3 12/ 

(19) 

(a) 

(b) 

<H1 / 2 

l 

• e~'<' * -

<t> 1/2 
£ l * l <-
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under a permissible bound the cumulative error involved in the 
transfer from the solutions u(x) to the solutions y{x), and in the 
interchange between <j>2 and x, and between £ and (2/3)Xx3/2. 

I t is evidently a requirement of the method that the second 
of these intervals be large enough to contain the first within its 
interior, so that there may exist sub-intervals (x-k, ff-jv) and 
(%N, Xk) in which the transfers may be made. It is not difficult to 
recognize that such an adjustment is always attainable by 
taking X suitably large if no restriction upon the magnitude of 
that parameter exists. 

Jeffreys appraises the method in the terms " . . . it has the 
advantage of rapid application in general and of practicability 
in many cases where no definite integral solutions (of the differ­
ential equation) can be found. On the other hand, it is not usu­
ally easy to fix rigorously the limits of error involved in adopting 
it." This seems to me to touch upon both the strength and the 
weakness of the procedure. As to the approximate magnitude of 
the error, Jeffreys concludes that it decreases with increasing X 
and is of the order 0(X -2 /ö). I must, however, confess myself 
unable to follow him to my own satisfaction in this final part 
of his deduction. 

Concerning the form of the statement of results (19) I would 
object to the use of the symbol < >, on the ground that it invites 
misconceptions which have not failed to show themselves in the 
literature. I find it not unnatural to read into a pair of forms 
connected by an arrow the thought that in the direction of the 
arrow the one form implies the other. In the case of the relations 
(19) this inference would certainly be incorrect. A review of the 
specific implications which were drawn from the analogous 
formulas (16), and which were listed in §6, will show the follow­
ing, admitting that the formulas (19) ignore quantities of the 
order 0(1/?) and 0(1 A) -

Firstly, the relation (19a) is one in which the left hand member 
implies and necessarily leads to the right hand member. The con­
verse, however, is not true, for it may be observed that in the 
deduction of the relation in question any solution yv(x) with rj 
of a suitable smallness, may replace the solution yo(x) used, 
while such solutions are not all associated with the form of the 
left hand member given. 

Secondly, the relation (19b) is one in which the right hand 
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member implies and necessarily leads to the left hand member, but 
not conversely. 

Three years subsequent to Jeffreys, that is, in 1926, Kramers, f 
in a discussion of the Schrödinger wave equation for a particle 
with one degree of freedom, encountered and again discussed 
the equation of the type (2a). His discussion is in every essential 
feature identical with that of Jeffreys and results in the deduc­
tion of the formula (19a). A subsequent paper % adds to it the 
relation 

1 1 / TT\ 

(19c) - , — j — *l€» < > cos H ), 

which is evidently the analog of the formula (16) in the particu­
lar case 7]—TT/2.There is, of course, no contradiction between 
the relations (19b) and (19c), since, as I have just remarked 
regarding the implication of one form from the other, the left 
hand form may be inferred from the right hand one in each 
case, but not conversely. Among the physicists these deductions, 
and especially the formulas (19a) and (19c), are known as part 
of the "W.K.B." (Wentzel, Kramers, Brillouin) method, which 
I have already mentioned in an earlier connection in §3. 

The extension of this method of procedure to the discussion 
of the differential equation of type (2a) in which </>2(x) has a 
zero of any integral order was made by Goldstein § in 1927. 
He relates his paper directly to that of Jeffreys and has similar 
applications in mind. 

8. The Method of Zwaan.\\ A second method for dealing with 
the equation (2a) in the case that the zero of 02 is a simple one 
is built upon the idea of avoiding the critical point at which <f>2 

vanishes, by encircling it in a passage through the complex 
plane. The procedure is the following, it being assumed by way 

f H. A. Kramers, Wellenmechanik und halbzâhlige Quantisierung, Zeitschrift 
für Physik, vol. 39 (1926), p. 828. 

J H. A. Kramers, and G. P. I t tmann, Zur Quanteilung des asymmetrischen 
Kreisels I I , Zeitschrift für Physik, vol. 58 (1929), p. 217. 

§ S. Goldstein, A note on certain approximate solutions of linear differential 
equations of the second order, etc., Proceedings of the London Mathematical 
Society, (2), vol. 28 (1928), p. 81. 

|| A. Zwaan, Intensitâten im Ca-Funkenspektrum, Dissertation, Utrecht, 
1929. 
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of an explicit hypothesis, that within a suitable region of the 
complex plane about the zero of 02, the function c/>2(x) admits of 
approximation to the required degree of precision by means of 
a function which is analytic. For convenience I shall again sup­
pose that the origin and the positive x direction have been 
chosen so that for real values of x the sign of the latter is always 
that of <£2. 

Let u(x) be any solution of the differential equation (2a) 
which is real over the axis of reals. For negative values of x such 
that XSX-N this solution is represented asymptotically by a 
linear combination of the forms (6), that is, with £ defined as in 
formula (9), 

(20a) u(x) ~ — e** -\ - e'1*. 
K 0i/2 01/2 

For these negative values of x it will be recalled that arg <f>2 = IT 
and arg £ = 37r/2. 

In the upper half of the complex x plane let a semi-circle be 
drawn with center at the origin and with a radius r, (i) such that 
— rtkx-N and T^XN, (ii) such that at each point of the arc an 
asymptotic representation (20a) exists, and (iii) such that 
within the semi-circle the hypothesis made concerning <£2 is ful­
filled. As x traverses this semi-circle in the clockwise sense the 
point £ in the complex £ plane traces out a curve Y which begins 
on the negative axis of imaginaries, proceeds on the whole in the 
clockwise sense about the point £ = 0, and ends on the positive 
axis of reals. We wish to consider the vicissitudes of the form 
(20a) during the transit of this arc. 

Let it be supposed that the first term of the form (20a) is 
never dominant on the arc V. In this case the reality of the solu­
tion for the negative values of x requires that arg C2 = 7r/4. The 
continuity of the solution is not contrary to a suitably moderate 
change in the coefficient of the submerged term, say from C\ to 
Ci*, but would be irreconcilable with any change in c^. Finally, 
the reality of the solution for positive values of x, where both 
4>2 and £ are positive, requires that in the end cf and c2 be com­
plex conjugates. From this the ultimate form, valid for X^XN, 
is deduced to be 

(20b) u(x) ~ ^—^ {e^~l arg c* + e-***arg c * } . 
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This, and the form (20a), give precisely the members of the 
relation (19a), which is thus established, in the sense that the 
left hand form implies the right. I t will be noted that no deduc­
tion of the left hand form from the right by means such as out­
lined is possible, which accords with the earlier discussion of the 
relation in question. 

The method was applied by Zwaan only when the coefficient 
d in form (20a) is zero. I t is at once evident that in most simple 
applications this yields an instance of the type considered, and 
hence affords a means, and a very simple one, for deriving the 
connection (19a). 

The obvious advantage of the method lies in its great sim­
plicity in cases in which it can be applied. Its weaknesses are 
several. Firstly, there is its excessively circumscribed range. 
Limited to the case of a simple zero of <£2, there seems no possi­
bility of obtaining from it any result whatever when the zero is 
of higher order. Secondly, there are involved in it many tacit 
assumptions, some by no means negligible, particularly as to the 
asymptotic character of the solutions in the complex plane. A 
critique and elaboration of this point is contained in the ad­
dress recently delivered here at Chicago by Birkhoff.f Finally, 
an estimation of the relative error involved in the result is 
almost impossible, and unlike either the method of Jeffreys or 
that which I shall next discuss, the procedure yields no informa­
tion regarding the functional character of a given solution in the 
neighborhood of a point where 4>2 becomes zero. 

9. Another Meihod.% The procedures which I have outlined in 
the two preceding sections are evidently to be characterized 
as of the nature of means for knitting together the results given 
by the classical process of §3 for each of two separate portions, 
namely (a, X-N) and (XN, b), of the fundamental interval (a, b). 
Under them a solution of the differential equation is thought 
of as asymptotically fitted in the one sub-interval, likewise so 

t G. D. Birkhoff, Quantum mechanics and asymptotic series, this Bulletin, 
vol. 39 (1933), p. 696. 

Î R. E. Langer, On the asymptotic solutions of ordinary differential equations, 
with an application to the Bessel functions of large order, Transactions of this 
Society, vol. 33 (1931), p . 23; and On the asymptotic solutions of differential 
equations, with an application to the Bessel functions of large complex order, 
Transactions of this Society, vol. 34 (1932), p . 447. 
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in the other, and devices are then added for patching the results 
together into a more or less complete representation. The 
method which I would now like to present to you attacks the 
problem from a more fundamental standpoint, that of obtaining 
at one and the same stroke a representation which is valid over 
the whole domain of the variable. Should there be no zero of 
the coefficient 02 in this domain, then the procedure of itself 
takes on the classical form. I t is a method, therefore, which 
seeks to include and generalize rather than to extend by piecing 
out the method heretofore classical. Of its definiteness, adapt­
ability, and scope I shall wish to say something anon. 

A scrutiny of the special differential equation (17) and of its 
explicit solutions (17a) suggests the consideration in the gen­
eral case of the functions 

in which J±ll stands, as customarily, for the Bessel functions of 
the indicated order, /x is a tentatively undetermined constant, 
and £ is defined in the manner of formula (9). The differ­
ential equation satisfied by these functions is 

d2v (1 - 2») dv 
+ ~ — + v = 0, 

de i di 
or, in terms of x as the independent variable, 

( X0 <£') 
z/" + < (1 - 2/i) W + Xty*» = 0. 

If in this, finally, the term of the first order is removed, the sub­
stitution being 

y = *v, with ¥ = (£/\)<1/2)-V4>1/2> 

the resulting equation is found to be 

(21) y / + | x V ( * ) - - ^ r - } y = 0, 

of which the solutions are accordingly 

(22) y± = * ( * ) ? / ± M ( Ö . 
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Superficially the differential equation (21) is of the type of the 
equation (2) with which we are primarily concerned. That, how­
ever, was true also of the equation (10) which is solved by the 
leading terms of the classical asymptotic forms. The test lies in 
the functional character of the coefficient SF'/^» which is given 
explicitly by the formula 

(23) = -- — + ( M'Hr-~ 

This evaluation shows that the difference between the equations 
(22) and (10) consists solely of the presence or absence of the 
term on the extreme right of (23). Near x0, the zero of </>2, the 
coefficient in equation (10) has a pole, a fact which presages 
the breakdown of the asymptotic representation as the value Xo 
is approached. The salient fact now is that this pole, which for 
a random choice of the constant /x exists also in the function (23), 
may be obviated in the latter by the choice of /x as the number 
l/(j> + 2), where v is the order to which cj)2{x) becomes zero at 
Xo. This order may be any non-negative real number. The case 
p = 0, with the consequent /*2 = l /4 , evidently causes the equa­
tion (21) to revert into identity with the equation (10), whereby 
the inclusion of the theory of §3 is at once made evident. 

With the indicated choice of /x, the equation (21) yields an 
approximation to the given equation (2) over an entire interval 
including the critical point x0 provided the coefficient 02 is 
otherwise bounded from zero. The nature of this approximation 
as it differs from that in the method of Jeffreys should be 
noted. There the difference between the two equations ap­
proaches zero, to be sure, at the critical point, but for every 
other fixed point it increases with X to the order of X2. In the 
present case the difference between the equations is entirely 
independent of X and is therefore the more effectively over­
shadowed by the term X202 the larger the value of X is taken. 

It was remarked in §3 that the permissibility of infinite values 
for a or b, the limits of the interval, was contingent upon the 
convergence of the integral (5). The corresponding develop­
ments in the present method require the convergence of the 
integral 

X ¥ " [ 7 
Ö X , ƒ 
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over intervals not including the critical point x0. Since the 
integrands differ only by the function 

( T - " > 
<t> dx 

which integrates directly into (/x2 —1/4)//£o0 dx, and since this 
approaches a limit as | x | —> oo , it is clear that the generalized 
method requires none but the original condition in this respect. 

The close resemblance between the differential equations (2) 
and (21), which becomes the more pronounced as X increases, 
warrants the presumption that with suitable adjustments the 
solutions of the latter will represent asymptotically those of the 
former. I shall sketch out in the next section a mode of proof 
for this. In doing so I shall, however, content myself here with 
the consideration of the simplest case, namely with X real and 
positive, with <t>2(x) real for real values of x, with the zero of cj>2 

simple and located at the origin and with the sign of <f>2 the sign 
of x. 

10. Proof of the Representation. The differential equation (2) 
may evidently be written if desired in the form 

(2*) u" + i x V 2 \u = 8(x)'U, 

with 

<$0) = x W - — — • 

For this equation, however, the part of the reduced equation is 
taken by (21), and on regarding (2*) formally as a non-homo­
geneous equation, a familiar procedure permits it to be solved 
in the form 

1 r* 
(24) u(x) = y(x) H • H(x, t)u(t)dt, 

W J c 

with 

H(x,t) s {y0(x)yi(t) - yi(x)y0(t)}8(t). 

In this y0 and yi may be any independent solutions of the equa­
tion (21) ; W is their Wronskian; c is any point of the interval 
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(a, b); and u(x) is the solution of the equation (2) which coin­
cides at x — c with y(x), any chosen solution of (21). I use the 
term coincides to mean that at the point in question the solu­
tions take the same value, with derivatives which are also equal. 

The equation (24) is an integral equation. If the entire right 
hand member is substituted for u(t) in the integrand, and the 
process is repeated again and again, etc., there results formally 
the infinite development 

u(x) = y(x) + — f H(x, t)y{t)dt 
W J c 

(24a) 

+ — ƒ * f8H(x, s)H(s, t)y{t)dtds + • • • . 

I will anticipate by mentioning that if y(x) and c are suitably 
chosen, and X is sufficiently large, this development converges 
and actually represents u(x). 

We are considering the case in which <f>2(x) has a simple zero, 
that is, in which ju = 1/3, and among these is included the 
special equation of §6. I t will be found that the formula (14) 
gives the solutions of the equation (21), and without modifica­
tions other than such as are implicitly involved in the broader 
significance of the symbols. The asymptotic forms of these solu­
tions are given by the formulas (16). With the special values 
77 = 0 and 77 = 7T/2, there are obtained thus a pair of solutions 
which may be used as y0 and yx and which are respectively of 
the forms, when x is negative or positive, indicated by the re­
lations : 

1 1 / i r \ 
yo(x) ~ —;—j—0-'*' ~ cos I £ ), 

2\<t>\112 </>1/2 V 4 / 

1 1 / 7T\ 
yi(x) ~ — j — . — e^l ~ cos ( £ H J. 
y M i / 2 0i/2 \ 4 / 

The Wronskian of this pair has the value X. 
The first integral term on the right of the relation (24a) is 

explicitly the sum of the two expressions 
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y0(x) rx 

A J c 

— yiM Cx 

h = —T~ ô(t)yQ(t)y(t)dt. 
X J c 

The points c and x have not as yet been specified. I t may be ob­
served, however, that if the range (cf x) contains wholly or 
partially the interval (#_#, XN), the integration over this latter 
contributes to the integral an amount which approaches zero 
with 1/X, for although the product of any two solutions y(x) 
given by (14) has X1/3 as a factor, it is otherwise bounded and 
the interval itself is in length of the order of X~2/3. The integra­
tions over the range where | £(/) | SN may, therefore, be dis­
regarded henceforth. The considerations when |£(/)| >iV are 
with advantage shaped to differentiate the cases in which the 
solution y(x) is rising at X_JV from those in which it is falling at 
tha t point. 

Case l.y(x) rising on c<x^X-N. In this case, as was found in 
§6, 

1 
tan 77 < — £-2U(c)i 

2 
and from formulas (16) 

(25a) y(x) 

COS V) 

tf-'*1, for c < x S %-
2 U 1/2 

[^7.cos(*~7 + 7' for X=XN-
It is directly clear that when |Ç(<)| >N, the integrand in the 
expression I\ is bounded, whence the same follows for the entire 
integral. The integrand in 1%, on the other hand, is of the form 

5(t) 
~e-w>0(l), 
<t>(t) 

with 0(1) designating a bounded function. Since 

| e~2iW | ^ | e~2i^x) | , whenever t ^ xy 

it being immaterial whether t or x is positive or negative, the 
integral in question is seen to be of the form e~2iS(x)0(l). Thus 
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the sum I1+I2, that is, the second term on the right of (24a), 
is concluded to be of the form 

0(1) , , 0(1) , . 
-y when | £| ^ Ny and e~%S, when £ > N. 

X 5/6 X<£ 1/2 

This mode of appraisement is extensible in a direct manner to 
the subsequent terms of (24a) and shows them to be of a sim­
ilar type with successively higher powers of X in the denomi­
nator, sufficient to cause convergence of the series. From this 
and the form of y(x) it clearly follows tha t : 

If u(x), a solution of equation (2), coincides with arising solu­
tion y(x) of equation (21) at a point c, where C<X-N, then 

(26a) u(x) = 

c o s 77 

2 «(a) 
— «H«l {1+0(1 /0+0(1A)} , 

when c g x g #_#, 

y(*) + 
0(1) 

X 5/6 
when X-N S x ^ :%, 

1 ( / TT \ 
< COS I £ \~ V } 

^*(x)\ \ 4 7 
+ 0 ( 1 / 0 + 0(1/X) when x ^ XN, 

the phase constant rj being that in the representation (25a). 

Case 2. y(x) falling at X_AT. In this case rj ^ 770, with the latter 
given by (15a), and 

(25b) y(x) 

s i n 7} 

I r/Jl/2 
?m 

I 1 / TT \ 
— cos I £ (-̂ 7 1, 

( c/)1'2 V 4 7 

when # ^ #_#, 

when r̂  ^ Xiv. 

The integrands in the expressions I\ and h are respectively of the 
forms 

8ll e2<i(»o(l), and 0(1), 
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when \i;(t)\ >N> and if c is chosen as any point to the right of 
X-N, the integrals are easily recognized as of the forms 

*2**<*>0(1), and 0(1). 

The conclusion which follows as in Case 1 is the following : 

If y(x), a solution of equation (21), is falling at X-N, and if 
u(x), a solution of equation (2), coincides with y(x) at a point c, 
where X-NSC, then 

(26b) u(x) 

s in 7] 

y(x) + 

— ^ { i + o ( i / o + 0(iA)}> 

when x ^ #_#, 

0(1) 
X 5/6 

when x-N S x ^ XN, 

< cos ( £ h 77 ) 

+ 0(1 / | ) + 0(1/X) > , when x ^ xN, 

with rj determined by the relations (25b). 

11. Scope of the Method. The proof which I have thus outlined 
applied especially to the case of a real parameter and variable 
and a simple zero of 02. I would emphasize, however, that these 
restrictions are in no way demanded by the method, but were 
imposed here for the sole purpose of avoiding tedious detail in 
the presentation. Generally the coefficient 4>2 may be any func­
tion, real or complex, which, in a given region Rx of the com­
plex x plane, admits of representation in a form (x — Xo)v4>\2(x), 
with v any non-negative real number and 0i2(x) an analytic 
function which is bounded from zero. The parameter X like­
wise need not be real. When such is the case the formula (9) 
defines J as a complex variable which ranges over a domain 
Rt obtainable by mapping from the original region. This domain 
is in general a portion of a Riemann surface with just one 
branch point located at £ = 0, with sheets in number finite or 
infinite depending upon the character of the number v, and 
with boundaries depending upon X and the boundaries of Rx. 
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The deduction of the approximating differential equation (21) 
is a formal matter unaffected by the greater or less generality of 
the elements it involves, and in the domain R$, the solutions (22) 
are classically known for all values of £. As was remarked in 
§5, the asymptotic representations of these solutions are subject 
to the Stokes' phenomenon, which interposes itself in the transit 
of any upper or lower half-plane of the Riemann surface R%. The 
sub-regions on this surface in which a single representation 
maintains, correspond to specific sub-regions of the original 
domain of tx which are determinable from the relating map. 
Since, as in the simple case, the functions y(x) represent asymp­
totically the properly associated solutions u(x) of the differ­
ential equation under consideration, the quantitative details 
of the Stokes' phenomenon as it applies to the latter are re­
vealed. 

The procedure of which the foregoing is an outline has been 
carried out fully in the instance of several differential equations 
of classical importance. By suitable transformation, for example, 
the differential equation of the Bessel functions J\(z) may be 
given the form of the equation (2) whenever |X| is large, and 
the structure of these important functions for all complex values 
of the variable and all large complex indices may therewith be 
derived, f The differential equation for the Hermite polynomials 
is a case of this kind, and a study of the solutions of this equa­
tion, or of its transform, the Weber equation, over the entire 
complex plane and for any large index, real or complex, has been 
successfully made. J Lastly, I have made a study by this 
method of the solutions of the Mathieu equation over the com­
plex plane of the variable and with all relative configurations 
of the two (real) parameters with one of them large. § In the 
instance of several other standard differential equations the 
method evidently makes a similar study possible. 

12. A More General Type of Differential Equation. The func­
tion x W in the coefficient of the equation (2) has throughout 
the discussion played a role of almost negligible importance. It 

f R. E. Langer, loc. cit. 
% N. Schwid, The asymptotic forms of the Hermite and Weber functions, Dis­

sertation, Wisconsin, (1934). 
§ R. E. Langer, The solutions of the Mathieu equation with a complex variable 

and at least one parameter large, Transactions of this Society, vol. 36 (1934). 
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will perhaps be granted in view of this that a dependence of this 
function upon X is not significant so long as it remains bounded 
with respect to X. It can, in fact, be shown that when the zero 
of 02 is a simple one the theory requires no essential modification 
even when % is of the order of X. That, however, is not so when 
the zero of </>2 is of higher degree. Only the simplest of such cases, 
namely that of an equation 

(27) u" - {X202O) + X0(s) + xO, X)}w = 0, 

in which </>2 has a zero of the second order, has to my knowledge 
been at all investigated. Yet such equations have arisen in a 
number of connections and those studies which have been made 
have been made under the spur of impending applications. 

Apparently the first discussion of an equation of the type (27) 
was given by Goldstein f in 1931. His method is an adaptation 
of that of Jeffreys discussed in §7. The variable and parameter 
are assumed to be real and the term %(#> X) does not occur in his 
equation. In consonance with the basic character of the method 
it is assumed that near XQ, the zero of 02, the functions </>2 and 6 are 
approximated to the requisite degree of accuracy by C\(x — Xo)2 

and c2, respectively, where cx and c2 are constants. The ap­
proximating equation, 

y" - { X 2 * i ( * - x0)
2 + \c2}y = 0, 

may be transformed into a Weber equation and with the solu­
tions of this (which are of classically known forms) playing the 
role taken in §7 by the Bessel functions, the connections be­
tween the asymptotic representations which maintain on the 
two sides of x0 are deduced. 

The differential equation of this type has presented itself also 
in quantum mechanics, and in this connection I find a discussion 
of it to have been given by Voss in 1933.f There is apparently 
no essential difference between his treatment and that of Gold­
stein. 

The method of §9 likewise lends itself to the generalization 

f S. Goldstein, A note on certain approximate solutions of linear differential 
equations of the second order, (2), Proceedings of the London Mathematical 
Society, (2), vol. 33 (1932), p. 246. 

t W. Voss, Bedingungen fiir das Auftreten des Ramsauereffektes, Zeitschrift 
für Physik, vol. 83 (1933), p. 581. 
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necessary for the discussion of the equation (27), and this, 
moreover, without restriction to real values of the variables, f 
Since the formulas as stated for the general case are of very con­
siderable complexity, it might be worth noting here the forms 
which apply when the parameter and variable are real and the 
former is positive. 

The equation is first to be adjusted so that the relation 

30'Oo)0'(#o) - 2<f>"(x0)d(xo) = 0 

is satisfied. Then if XQ is taken as the origin, and if <f>2 is bounded 
from zero except at the origin,J there are solutions describable 
as follows: 

Case 1. 02(#)^O : solutions exponential. With k and £ de­
fined by the relations 

0(0) 

/

rx ( e k<t> \ 
<j>dx + { 1 >dx, 

o Jo 12* f*4>dx) 
40'(O) * JQ ' Jo 12* 

there are solutions of the asymptotic forms 

(2{)*«-« 

Ua(x) ' 

\l/40l/2 

1 / _ 
Xi/41 ^ 11/21 r ( l / 4 - k)V(3/4 - k) 

when x ^ XN, 

2TT(2£) -h„t 

'}. 

Mfi(x) > 

1/4A1/2 ( 

2T(2Ö~»«« 

X1 '4* 

I x1'4 U h /2 

r(i/4 - *)r(3/4 - *) 

Ô • (2£)*«r«! 

when x ^ x_w, 

5- (2Ö*^« | , 

w h e n XtZ XN, 

when o? ^ #-#, 

with 5 = ie2Jciri. I twill be noted that 5= ± 1 when k = n + l/2± 1/4, 
that is, at the values of k for which the gamma functions become 
infinite. For such values a third solution which may be used is 

t R. E. Langer, The asymptotic solutions of certain linear ordinary differ­
ential equations oj the second order', Transactions of this Society, vol. 36 (1934), 
p . 90. 

% For more precise statements I refer to Langer, loc. cit. 
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when x ^ XN, 

when A; ^ #_#. 

It is to be understood that arg £ is to be taken as zero for both 
positive and negative values of x. 

Case 2. <£2(x) ^ 0 : solutions oscillatory. With k and £ given by 
the formulas 

0(0) 

4 I 4/(0) 

there are solutions which when £ is small are of the forms 

(2£)3/4 ( 4 ) 
«•(*) = ——,—r~\ 1 + —*{ + •• • >, 

(2£)1/4 

«,(*) = —^ {1 + 4*£ + • • • }, 

and which when £ is large are of the forms 

{x/\ x\)ek*'2(w/\4>\) 

X1/41 r(3/4 + **) I 
(Vhl)e^V/l0l)^ L ., „ 

««(a;) = x 1/y) | ^ / 0 ,A — T T T i — c o s \ S ~" * log 2£ 

+ arg r(3/4 + **) - —J, 

2 ^ / 2 ( T T / U | ) 1 / 2 I 

Uy(x) = : ; cos< £ — k log 2£ 
n \ i ' * | r ( l / 4 + i * ) | l * 

+ arg r(l/4 + «) - Y } • 

The uncertainty or vagueness of these formulas is of the order 
of 1/? and of (logX)A. 

13. Remarks on the Wave Equation. The Schrödinger wave 
equation for a particle with one degree of freedom is familiarly 
of the form 
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(28) u" + --{E-V(x)}u = 0, 
h2 

with m the mass of the particle, E and V(x), respectively, the 
total energy and the potential energy, and h denoting Planck's 
constant. A wave function is a solution of the equation which 
remains bounded over the entire infinite axis of x. The cases of 
especial interest are those in which E — V{x) changes sign for 
one or more values of x, and when such is the case the equation 
is evidently one of essentially the type we have been considering. 
In classical mechanics motion is possible only when E— V(x) is 
positive. These are the intervals in which the solutions of the 
equation (28) are oscillatory. A wave function, that is, a perma­
nently bounded solution, will in general exist only for special 
values of E, called characteristic values, the determination of 
which generally constitutes the essential part of the problem. 

I t is customary in the literature of the equation (28) to treat 
it as of the type of the equation (2) with the roles of X2 and <£2 

taken respectively by the expressions 4:w2/h2 and 2m {E— V(X) }, 
and with x = 0- The "W.K.B." procedure is then applied to sup­
ply the connection formulas across a zero of 4>2 for the represen­
tations of u{x) asymptotic with respect to X. In these representa­
tions the leading terms alone are generally considered. There 
are in this process a number of points to which I should like to 
call attention since, if nothing more, they hold the potentiali­
ties of error, and in the disregard of which conclusions have in 
a number of instances been drawn which seem to lack complete 
justification. 

Firstly, the value assigned to X, though in the prevailing units 
it may be large, is nevertheless fixed. The designation of a 
quantity as "of the order of 1/X" is therefore not a significant 
one, and formulas asymptotic with respect to X should be used 
only with caution. I t would seem that when such formulas are 
employed an actual verification that the relative vagueness of 
the formula is within the allowable margin of error is indispensa­
ble, and that this is particularly so when conclusions concerning 
quantities which may be relatively small are involved. Sec­
ondly, the function 2m {E— V(X) } is dependent upon the param­
eter E. In this respect it differs from the 02 of the general 
asymptotic theory. When the range of values of E is considéra-
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ble and also when E lies in certain critical ranges, this feature is 
easily conceived to be, and may be shown to be, one of first 
importance. Thirdly, the points at which the solutions change 
in character from the exponential to the oscillatory are not fixed 
but vary with the parameter E, a matter which is demonstrably 
not to be lightly ignored. For if, in particular, two such points 
approach each other too closely, the representations ordinarily 
obtained become entirely invalid. 

Having raised these issues I would like to present a variation 
of the procedure outlined which seems to me to be more reveal­
ing, and logically much more defensible, though from the purely 
manipulative standpoint it is practically identical with the cus­
tomary one. For convenience, I shall think of the case in which 
the function 2m {E — V(x)} is positive on a single finite interval, 
say xo S x S XQ . The substitution 

X XQ 

S = 
XQ XQ 

gives to the equation (28) the form 

d2u 
(29) — + W C E , * ) « = 0, 

ds2 

in which we may choose 

— {lm(E- V(x))}1,2-dx, 
h J x0 

;;{E-v(s)}l'*dsm 

In this form almost all the questions raised above have been 
obviated. In the first place, X is not fixed but increases with E. 
Secondly, though, to be sure, </>2 still depends upon E, this de­
pendence has been normalized, so to speak ironed out, to the 
extent that the area under the graph of <f> between its zeros is 
fixed at the value 1. Thirdly, the zeros of <j>2 are fixed, specifically 
at 5 = 0 and 5 = 1. Evidently the equation in the form (29) differs 
in only a very minor way from the equation (2) of the general 
theory. Indeed, in the particular example V(x)^x2 which is 
often invoked, the equation is 

(29a) 

*(£ , s) 
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d2u 128TT 2 W£ 2 

1 rs _ S2}u = 0 

ds2 h2 

which is precisely of the type considered. 
From the form (29) the determination of the characteristic 

values proceeds in the usual way. The solution which is bounded 
on the range — o o < s < 0 , must be that given by (26a) with 
77 = 0. Its form in a fixed interval entirely within (0, 1) must, 
therefore, be 

(30a) T 4 ) { C O S 0 - T ) + O ( 1 / X ) } ' 
with %=\fQ<fids. Similar considerations, with the origin replaced 
by the point s = l, and the direction of the axis reversed, show 
tha t the solution bounded on l<s< oo must in the oscillatory 
interval have the form 

(30b) i^{cos^-i)+0(1/x)}' 
with £i=A/ s0 ds. Since £+£i=X, we may write (30b) in the form 

i c o s U - X - — ± — ) + 0(1/X)>, 
4>1/2(*)l V 4 2 / W ƒ 

and the condition that this be identical with (30a) is obviously 
that 

x - ( . + i),+o(i). 

Since X must be large, this shows that the order of 1/X is the 
order of 1/n, and on substituting the value of X the condition 
becomes 

2 C *°' 1 / 1 \ 
(31) — {2m(E- V(x))}ll2dx = n + — + 01 — J. 

h J Xo 2 \n / 
In order that a high degree of precision be assured, it is evidently 
requisite that n be sufficiently large. 

If n is only moderate the result, at least without further con­
siderations, is of little value. It may in this case be useful to vary 
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the method by skipping over the interval (xQy x0
f) entirely in the 

following way. Since the left member of (31) is not large, the 
value of 6 given by the formula 

e = ^-(2m)^{Vm- E}, 
h 

with Vm denoting the minimum of V(x), is of moderate magni­
tude. The equation (28) may, therefore, be written in the form 

u" - {\2<£20*0 +\d}u = 0, 

with 

STT2m , . 

h2 

and is thus reduced to one of the type referred to in §12. 
The case in which the function {E — V(x)} is positive on two 

or more distinct intervals has also important applications and 
has received considerable attention in the physical literature.f 
It would appear, however, that the considerations involved in it 
call for peculiar caution with respect to the limitations and im­
plications of asymptotic representations, and these it seems have 
been all too often overlooked. 

Let me suppose, to be concrete, that an equation (2) (or (29)) 
has a coefficient 02 which is negative on just one interval, say 
Xi<x<x0. On this interval the solutions are then of exponential 
type and in particular there are solutions of each of the forms 

(a) T-T— e^, 

(32) 

(b) TTïIT^"1*01' with £o = x f <t>dx. 

t See, for example, D. M. Dennison, and G. E. Uhlenbeck, The two-minima 
problem and the ammonia molecule, Physical Review, vol. 41 (1932), p. 313; 
H. D. Koenig, Calculation of characteristic values for periodic potentials, Physical 
Review, vol. 44 (1933), p. 657; Ta-You Wu, Characteristic values of the two 
minima problem and quantum defects of states of heavy atoms. Physical Review, 
vol. 44 (1933), p. 727. 
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I t may not be concluded from this, however, that the solution 
represented by (32a) has the form 

(32a*) - L C O S ( ? 0 + JL), 

for x>Xo, in virtue of the connection formula (19c), for that 
formula, as was remarked earlier, permits no implication from 
left to right. In fact, by (26b), the form beyond XQ may be 

esc rj 
cos ( * - T + ')' 

with any rj exceeding a small value 770 (given by 15a). The form 
(31b) also implies strictly no more than the form 

2 sec 771 
cos 01/2 («• - 7 + '•)• 

Since the value of rji in this is, however, restricted to be so small 
as to lie below the vagueness which has already been neglected 
in using only the leading term, the order of the error is not ac­
tually increased by suppressing rji entirely and writing 

(32b*) -Lcos^-.!). 

which is in accord with the connection formula (19a). With this 
understanding the form (32b*) may be associated with any solu­
tion which is a rising exponential as it approaches the critical 
point. A situation similar to that at xo is, of course, also con­
fronted in this matter at the point X\. 

The difficulty here seems to me to be circumventable only by 
picking special solutions in a suitable way, and holding fast to 
them throughout the discussion. I will try to make this clear as 
follows. Let Ui(x) be chosen as that solution which for x<Xi is 
of the form 

1 / r*i T\ 
— cos I X I 6 dx H ]. 

I t may be implied, for instance, by (26b) that for x>x% the 
form is 
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1 1 
-—.— eV'i'*'<**, t h a t is, W^ '* • d x • -.—=— e~xfl'* 'd*. 

M l / 2 Ul 1 / 2 

This solution as Xo is approached from the left is rising. Hence 
its form for X>XQ may be inferred, as in the case of (32b), and 
the complete relation indicated thus 

1 / f** T \ 1 fX 

cos ( X I <j>dx-\ ) > -,—:— ey*il*\dx 

</>1/2 \ Jx 4 / at*. U|1 /2 

«• 2 / r* TT\ 

> eVXl ^ldx cos ( X I <t>dx J. 
a t * , 0 1 ' 2 \ J x0 4 / 

The inference has in each case been in the direction of the arrow. 
For a second solution u%(x) we must now choose in the region 

x>x0. In particular, the choice may be placed upon that one of 
the form 

1 / C* ir\ 
— cos ( X I 6 dx H J, 
61 /2 V JX0 4/' 

01" X "*o 

which then is certainly of the form 

—.— eyx \+\d» that is, «V* 1*1**.-:—:— e-^*! I*,<**, 

Ul 1 / 2 M 1 / 2 

when a; <x0. This, however, is rising as x approaches #i from the 
right, and hence for x <x± its form is as indicated in the formula 

/» 2 / CXl *"\ 
e\JXl \*\dx cos ( X I <t>dx ) < 

<£1/2 \ J * 4 / at*, 
l ,*«, l / rx

 TT\ 
_—.— ^x/. \*\dx < cos X 4>dx -\ J, 
|</>|1/2 a t * . < ^ 2 \ JX0 4 / ' 

the arrows again showing the direction in which the inference 
was made. 

With a pair of solutions Ui(x), u2(x) thus chosen, every solu­
tion is, of course, expressible as a combination 

u(x) = Aui(x) + Bu2(x). 

I t is then given asymptotically in each of the three intervals by 
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the same combination of forms. In particular, in the interval 
x > ^ w e should have 

unKJ <Ccos(X I ó dx ] + I ? cos ( \ I ó dx -\ )V, 

4 > 1 / 2 l V JH 4/ V JH 4 / J ' 
with 

C = 2AeV:i ^d*, 

or, as it may be alternatively written, 

( £ 2 + C 2 } 1 / 2 / Cx * B\ 
u r^ J v. c o s f x I 0 dx h tan""1 — ). 

I * ƒ \ J*. 4 c) 
I have carried the formula to this last stage especially to warn 
against deductions from it which are not justified. For example, 
to conclude from it that the phase of u differs from that of U\ 
by the amount tan~l(B/C) would be warranted and meaningful 
only if this amount is large enough to project beyond the margin 
of vagueness which is inherent in all the formulas used. Though 
this is ignored when only the leading terms are written, it must 
nevertheless be borne in mind whenever conclusions are being 
drawn. 
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