CONTINUED FRACTIONS AND CROSS-RATIO GROUPS OF CREMONA TRANSFORMATIONS*

by h. S. WALL

1. Introduction. An arbitrary cross ratio

$$
r_{i j k l}=\left[z_{i}, z_{j}, z_{k}, z_{l}\right]
$$

of four of the independent variables $z_{1}, z_{2}, \cdots, z_{n}$ is expressible rationally in terms of the ratios of any fundamental system such as
$C: \quad s_{i}=\left[z_{i-1}, z_{i-2}, z_{i}, z_{i-3}\right], \quad(i=4,5, \cdots, n)$,
or
$M: \quad r_{i}=\left[z_{1}, z_{2}, z_{3}, z_{i}\right], \quad(i=4,5, \cdots, n)$,
of $n-3$ independent ratios. If any particular system of $n-3$ independent ratios be associated with a particular order of the variables by varying the order of the n variables, we shall have in all n ! conjugate systems; these systems are expressible rationally in terms of the original system and in terms of any system of the set. Hence arises a group of n ! Cremona transformations on $n-3$ variables. E. H. Moore, \dagger H. E. Slaught \ddagger and others have studied the group based on the initial system M.

In this paper I have shown that the transformations based on the system C have application to continued fractions of the form

$$
\xi=1-\frac{x_{1}}{1}-\frac{x_{2}}{1}-\frac{x_{3}}{1}-\ldots
$$

If we take for the n variables $z_{1}, z_{2}, \cdots, z_{n}$ any n consecutive convergents of the continued fraction, say

$$
\begin{equation*}
z_{i}=\frac{A_{q+i}}{B_{q+i}}, \quad(i=1,2, \cdots, n ; q \geqq-1), \tag{1}
\end{equation*}
$$

[^0]then in this case the fundamental system C is $n-3$ consecutive elements x_{i} of the continued fraction ξ, namely,
\[

$$
\begin{equation*}
s_{i}=x_{q+i}, \quad(i=4,5, \cdots, n) \tag{2}
\end{equation*}
$$

\]

The Cremona transformations are on these elements, and their effect is to permute n consecutive convergents of ξ among themselves. The transformations do not disturb the convergence or divergence of the continued fraction, and result therefore in new convergence criteria.
2. The Group $C_{n!}$ of Cremona Transformations. Let $A_{m, t} / B_{m, t}$, ($t \geqq 0, A_{m, 0} / B_{m, 0}=A_{m} / B_{m}$), be the m th convergent of the continued fraction

$$
1-\frac{x_{1+t}}{1}-\frac{x_{2+t}}{1}-\frac{x_{3+t}}{1}-\ldots
$$

Then with the aid of the identity*

$$
A_{n+t-1} B_{t-1}-A_{t-1} B_{n+t-1}=-x_{1} x_{2} \cdots x_{t} B_{n-1, t},
$$

we find that a cross ratio $r_{i j k l}=\left[z_{i}, z_{j}, z_{k}, z_{l}\right],(i<j<k<l)$, of four of the n variables (1) can be expressed in the form

$$
\begin{equation*}
r_{i j k l}=\frac{B_{k-i-1, q+i+1} B_{l-j-1, q+j+1}}{B_{k-j-1, q+j+1} B_{l-i-1, q+i+1}} . \tag{3}
\end{equation*}
$$

The other five distinct ratios of these four variables can be obtained from the ratio (3) by the well known transformations

$$
\begin{gather*}
r_{j i k l}=\frac{1}{\lambda}, \quad r_{i k j l}=1-\lambda, \quad r_{k i j l}=\frac{1}{1-\lambda}, \tag{3a}\\
r_{k j i l}=\frac{\lambda}{\lambda-1}, \quad r_{j k i l}=\frac{\lambda-1}{\lambda},
\end{gather*}
$$

where $\lambda=r_{i j k l}$. In particular, we find that

$$
\begin{equation*}
s_{i}=x_{q+i}, \quad(i=4,5, \cdots, n) \tag{4}
\end{equation*}
$$

Inasmuch as (3) depends upon $x_{q+4}, x_{q+5}, \cdots, x_{q+n}$ only, it follows that (4) is a fundamental system of cross ratios.

Let $j_{1}, j_{2}, \cdots, j_{n}$ be an arbitrary permutation of $1,2, \cdots, n$; and put

* Perron, Die Lehre von den Kettenbrüchen, 1st ed., p. 17.

$$
a=\left(\begin{array}{ccc}
1, & 2, \cdots, & n \\
j_{1}, & i_{2}, \cdots, & i_{n}
\end{array}\right)
$$

Then
C^{a} :

$$
s_{i}^{a}=\left[z_{j_{i-1}}, z_{j_{i-2}}, z_{j_{i}}, z_{j_{i-2}}\right], \quad(i=4,5, \cdots, n),
$$

is also a fundamental system; and C^{a} is expressible rationally in terms of C :

$$
s_{i}^{a}=f_{i}^{a}\left(s_{4}, s_{5}, \cdots, s_{n}\right), \quad(i=4,5, \cdots, n)
$$

or, simply, $C^{a}=f^{a} C$.
If b is another permutation, then $C^{a b}=f^{a} C^{b}=f^{a b} C$. The n ! Cremona transformations f^{a}, f^{b}, \cdots form a group $C_{n!}$ simply isomorphic with the symmetric permutation group $G_{n!}$.

The ratios s_{i} are given in terms of the ratios r_{i} of E. H. Moore by the formula

$$
\begin{equation*}
r_{i j k l}=\left[r_{i}, r_{j}, r_{k}, r_{l}\right], \quad\left(r_{1}=\infty, r_{2}=0, r_{3}=1\right) \tag{5}
\end{equation*}
$$

The r_{i} can be expressed in terms of the s_{i} by means of (3) and (3a). Thus the group $C_{n!}$ is equivalent to that of E. H. Moore under the transformation

$$
s_{i}=\left[r_{i-1}, r_{i-2}, r_{i}, r_{i-3}\right], \quad(i=4,5, \cdots, n)
$$

3. Convergence Criteria for Continued Fractions. Let C_{m} ! be the subgroup of $C_{2 m!}$ corresponding to permutations of the form

$$
a=\left(\begin{array}{cccccccc}
1 & 2 & \cdots & m & 1+m & 2+m & \cdots & m+m \\
j_{1} & j_{2} & \cdots & j_{m} & j_{1}+m & j_{2}+m & \cdots & j_{m}+m
\end{array}\right)
$$

in which $j_{1}, j_{2}, \cdots, j_{m}$ is a permutation of $1,2, \cdots, m$. It is plain that $f_{4}{ }^{a}, f_{5}{ }^{a}, \cdots, f_{m}{ }^{a}$ are functions of $s_{4}, s_{5}, \cdots, s_{m}$ alone, while $f_{m+4}^{a}, f_{m+5}^{a}, \cdots, f_{2 m}^{a}$ are functions of $s_{m+4}, s_{m+5}, \cdots, s_{2 m}$ alone. The remaining three functions depend in general upon $s_{4}, s_{5}, \cdots, s_{2 m}$.

Let $k \geqq 0, m \geqq 3, z_{i+1}=A_{k m+i} / B_{k m+i}, \quad(i=0,1, \cdots, 2 m-1)$. Then $s_{i}=x_{k m+i-1},(i=4,5, \cdots, 2 m)$. We have

$$
x_{k m+i-1}^{a}=f_{i}^{a}\left(x_{k m+3}, x_{k m+4}, \cdots, x_{(k+2) m-1}\right), \quad(i=4,5, \cdots, 2 m)
$$

with the exceptional values*

[^1]\[

$$
\begin{aligned}
& x_{0}^{a}=\frac{A_{j_{1}-1}}{B_{j_{1}-1}}, \quad x_{1}^{a}=\frac{A_{j_{1}-1}}{B_{j_{1}-1}}-\frac{A_{j_{2}-1}}{B_{i_{2}-1}} \\
& x_{2}{ }^{a}=\left(\frac{A_{j_{5}-1}}{B_{j_{2}-1}}-\frac{A_{j_{2}-1}}{B_{j_{2}-1}}\right) /\left(\frac{A_{j_{2}-1}}{B_{j_{3}-1}}-\frac{A_{j_{1}-1}}{B_{j_{1}-1}}\right)
\end{aligned}
$$
\]

Then the continued fraction (with real or complex elements)

$$
\xi_{a}=x_{0}{ }^{a}-\frac{x_{1}{ }^{a}}{1}-\frac{x_{2}^{a}}{1}-\frac{x_{3}^{a}}{1}-\ldots
$$

has the same convergents as ξ, but in a different order. Consequently, if W_{a} is a region in m-space such that when the points

$$
\left(x_{k m}, x_{k m+1}, \cdots, x_{(k+1) m-1}\right), \quad(k=0,1,2, \cdots)
$$

range over W_{a} we shall always have*

$$
\left|x_{n}^{a}\right| \leqq \frac{1}{4}, \quad(n=2,3,4, \cdots)
$$

then ξ converges. In this manner every transformation of the group $C_{m!}^{\prime}$ gives a convergence theorem for ξ.
4. The Groups C_{120} and $C_{120}{ }^{\prime}$. As an illustration, \dagger we shall consider the groups $C_{5!}$ and C_{51}. The group C_{120} is generated by the four transformations

$$
K \sim(34), \quad L \sim(23)(45), \quad M \sim(45), \quad T \sim(12)
$$

The three transformations K, L, M generate by themselves a subgroup C_{24} of the main group $C_{120} ; T$ will extend C_{24} to the main group.

By (3) and (3a) the transformations K, L, M, T are found to be as follows:

$$
\begin{align*}
& K: x^{\prime}=\frac{x}{x-1}, y^{\prime}=\frac{1}{y} ; \quad L: x^{\prime}=\frac{1-y}{x}, y^{\prime}=y \tag{6}\\
& M: x^{\prime}=\frac{x}{1-y}, y^{\prime}=\frac{y}{y-1} ; \quad T: x^{\prime}=\frac{x}{x-1}, y^{\prime}=\frac{y}{1-x}
\end{align*}
$$

where, to avoid subscripts, we have put $s_{4}=x, s_{5}=y$.

[^2]In the $x y$-plane the geometrical configuration for the group C_{24} is as follows. The curves

1. $x^{2}=1-y$,
2. $y=0$,
3. $x=0$,
4. $y=(x-1)^{2}$,
5. $x=1$,
6. $y=1$,
7. $x+y=1$,
8. $x^{2}+2 x y-2 x-y+1=0$,
divide the plane into 24 regions. Take the fundamental region I to be the region in the second quadrant bounded by the curves 1,2 and 3 . The other regions in the second quadrant are then: L bounded by $1,2,6 ; L K$ bounded by 6,$8 ; L K L$ bounded by 7,$8 ; M K L$ bounded by 4,7 ; and $M K$ bounded by 3,4 .

In the first quadrant the regions are: K bounded by 3,8 ; $K L$ bounded by $5,6,8 ; K M K L$ bounded by $4,5,6$, extending to infinity; $M L K$ bounded by 4,$6 ; M L K M$ bounded by $2,4,6$; $M L K L M$ bounded by $4,5,6 ; K L K$ bounded by $1,5,6 ; L K L K$ bounded by 1, $7 ; M K L M$ bounded by 4, 7; and $K M K$ bounded by $2,3,4$.

In the third quadrant the regions are: $L M$ bounded by 1,2 ; and M bounded by $1,2,3$.

In the fourth quadrant the regions are: $K M$ bounded by 2,3 , $8 ; K L M$ bounded by 5,$8 ; M L K L K$ bounded by 1,$5 ; M K L K$ bounded by 1,$7 ; L K L M$ bounded by 7, 8 ; and $L K M$ bounded by 2,8 .

The generators of C_{120} correspond to the permutations (34) $(89),(23)(45)(78)(9,10),(45)(9,10)$, and (12) (67). If we denote them by $K^{\prime}, L^{\prime}, M^{\prime}, T^{\prime}$, respectively, then these transformations are found to be

$$
\begin{array}{rlrl}
x^{\prime} & =\frac{x}{x-1}, \quad y^{\prime}=\frac{1}{y}, \quad & \bar{x}^{\prime}=\frac{\bar{x}}{\bar{x}-1}, \quad \bar{y}^{\prime}=\frac{1}{\bar{y}}, \\
K^{\prime}: & v^{\prime} & =\frac{u}{u-1}, & v^{\prime}=\frac{v}{1-w}, \quad w^{\prime}=\frac{w}{1-\bar{x}} ; \\
x^{\prime} & =\frac{1-y}{x}, \quad y^{\prime}=y, \quad & \bar{x}^{\prime}=\frac{1-\bar{y}}{\bar{x}}, \quad \bar{y}^{\prime}=\bar{y}, \\
L^{\prime}: & & =\frac{v}{u}, \quad v^{\prime}=\frac{v}{v+w-1}, \quad w^{\prime}=\frac{w}{v+w-1} ;
\end{array}
$$

M^{\prime} :

$$
x^{\prime}=\frac{x}{1-y}, \quad y^{\prime}=\frac{y}{y-1}, \quad \bar{x}^{\prime}=\frac{\bar{x}}{1-\bar{y}}, \quad \bar{y}^{\prime}=\frac{\bar{y}}{\bar{y}-1},
$$

$$
u^{\prime}=\frac{1}{u}, \quad v^{\prime}=\frac{v}{v-1}, \quad w^{\prime}=\frac{w}{1-v}
$$

T^{\prime} :

$$
x^{\prime}=\frac{x}{x-1}, \quad y^{\prime}=\frac{y}{1-x}, \quad \bar{x}^{\prime}=\frac{\bar{x}}{\bar{x}-1}, \quad \bar{y}^{\prime}=\frac{\bar{y}}{1-\bar{x}},
$$

$$
u^{\prime}=\frac{u}{1-v}, \quad v^{\prime}=\frac{v}{v-1}, \quad w^{\prime}=\frac{1}{w},
$$

where for simplicity we have put $x=x_{5 m+3}, y=x_{5 m+4}, u=x_{5 m+5}$, $v=x_{5 m+6}, w=x_{5 m+7}, \bar{x}=x_{5 m+8}, \bar{y}=x_{5 m+9}$.

Each of these transformations yields a convergence theorem for the continued fraction ξ in accordance with the remarks in §3. For example, K^{\prime} gives the following theorem.

The continued fraction ξ converges if the following inequalities hold:

$$
\begin{aligned}
&\left|\frac{x_{2}}{1-x_{3}}\right| \leqq \frac{1}{4} ; \quad\left|\frac{x_{5 n+3}}{x_{5 n+3}-1}\right| \leqq \frac{1}{4}, \quad\left|\frac{1}{x_{5 n+4}}\right| \leqq \frac{1}{4}, \\
&(n=0,1,2, \cdots), \\
&\left|\frac{x_{5 n}}{x_{5 n}-1}\right| \leqq \frac{1}{4}, \quad\left|\frac{x_{5 n+1}}{1-x_{5 n+2}}\right| \leqq \frac{1}{4}, \quad\left|\frac{x_{5 n+2}}{1-x_{5 n+3}}\right| \leqq \frac{1}{4} \\
&(n=1,2,3, \cdots)
\end{aligned}
$$

where $x_{1}, x_{2}, x_{3}, \cdots$ are real or complex numbers.
Northwestern University

[^0]: * Presented to the Society, under a somewhat different title, April 6, 1934.
 \dagger E. H. Moore, American Journal of Mathematics, vol. 22 (1900), pp. 279291.
 \ddagger H. E. Slaught, ibid., pp. 343-380, and Part II in vol. 23.

[^1]: * Perron, loc. cit., p. 198.

[^2]: * Perron, loc. cit., p. 259.
 \dagger The details of this illustration were worked out by Miss Lozelle Thomas.

