ON THE LATTICE THEORY OF IDEALS \dagger

BY GARRETT BIRKHOFF

1. Outline. The ideals of any ring define, relative to g.c.f. and l.c.m., a combinatorial system having properties which we shall presently define as characterizing B-lattices.

In this article we shall first develop some new properties of B-lattices as abstract systems; the main results of this part of the work find expression in Theorems 1-5. Then we shall apply this theory and some older results to the ideals of commutative rings R which possess a principal unit l and satisfy the Basis Theorem. In addition to developing the known theory of einartig ideals by combinatory methods, we give a necessary and sufficient condition that the B-lattice defined by the ideals of R should be isomorphic with a ring of point sets in the sense of Hausdorff. \ddagger
2. Notation; Lattice Algebras. We shall in general use capital letters to denote systems, and small letters for elements. $a \in A$ will mean " a is an element of the system A "; $B \subset A$ will mean " $b \in B$ implies $b \in A$ "; $B<A$ will mean $B \subset A$ but $B \neq A$.

By a lattice algebra will be meant any system L which satisfies the following postulates:
(L1). Any $a \in L$ and $b \in L$ determine a unique "join" $a \cap b \in L$ and a unique "meet" $(a, b) \in L$.
(L2). $a \cap b=b \cap a$ and $(a, b)=(b, a)$ for any $a \in L$ and $b \in L$.
(L3). $a \cap(b \cap c)=(a \cap b) \cap c$ and $(a,(b, c))=((a, b), c)$ for any $a \in L, b \in L$, and $c \in L$.
(L4). $a \cap(a, b)=a$ and $(a, a \cap b)=a$ for any $a \in L$ and $b \in L$.
From (L1)-(L4) follow $a \cap a=(a, a)=a$. Moreover $a \cap b=b$ is equivalent to $(a, b)=a$; in this case we write $a \subset b$ or $b \supset a$, and $a \subset b$ taken with $b \subset c$ implies $a \subset c$. Moreover, $a<b$ means $a \subset b$ but $a \neq b$, while " b covers a " means $a<b$, but that no $x \in L$ satisfies $a<x<b$.

The reader may find it helpful to regard lattices as distorted

[^0]Boolean algebras in which $a \cap b$ is substituted for $a+b$, and (a, b) for $a \cdot b$.

The following additional conditions are optional:
(L5). If $a \subset c$, then $a \cap(b, c)=(a \cap b, c)$.
(L6). $(a, b \cap c)=(a, b) \cap(a, c)$ for any $a \in L, b \in L$, and $c \in L$.
If a lattice satisfies (L5), it is called a B-lattice; if it satisfies (L6), it is called a C-lattice. Any C-lattice is a B-lattice, and also satisfies $a \cap(b, c)=(a \cap b, a \cap c)$.
3. Subdirect Decomposition. We shall consider in §§3-4 only lattices L which have a "largest" element j satisfying $a \cap j=j$ for every $a \in L$; such is always the case in applications. \dagger

We shall say that $a \in L$ and $b \in L$ are coprime if and only if $a \cap b=j$. We shall say that two sublattices $\ddagger A \subset L$ and $B \subset L$ are coprime if and only if $a \in A$ and $b \in B$ imply $a \cap b=j$. We shall say that the sublattices of a finite or transfinite§ sequence of sublattices $A_{1} \subset L, \cdots, A_{n} \subset L$ are strongly coprime if and only if every A_{i} is coprime with the sublattice generated by $\|$ the other sublattices of the sequence.

Let B_{1}, \cdots, B_{n} be any (finite or transfinite) sequence of lattices, whose largest elements are j_{1}, \cdots, j_{n}. By an f-type vector $\left[b_{1}, \cdots, b_{n}\right],\left(b_{i} \in B_{i}\right)$, we mean one in which $b_{i}=j_{i}$ except for a finite set of subscripts i. By the subdirect product $B_{1} \hat{x} \cdots \hat{x} B_{n}$ $=B^{*}$ of the B_{i} is meant the lattice whose elements are the f-type vectors just defined, and such that by definition

$$
\begin{gathered}
{\left[b_{1}, \cdots, b_{n}\right] \cap\left[b_{1}^{\prime}, \cdots, b_{n}^{\prime}\right]=\left[b_{1} \cap b_{1}^{\prime}, \cdots, b_{n} \cap b_{n}^{\prime}\right]} \\
\left(\left[b_{1}, \cdots, b_{n}\right],\left[b_{1}^{\prime}, \cdots, b_{n}^{\prime}\right]\right)=\left[\left(b_{1}, b_{1}^{\prime}\right), \cdots,\left(b_{n}, b_{n}^{\prime}\right)\right] .
\end{gathered}
$$

B^{*} is evidently a lattice with largest element $\left[j_{1}, \cdots, j_{n}\right]$. Further, if B_{i}^{*} denotes the sublattice of elements of the form $\left[j_{1}, \cdots, j_{i-1}, b_{i}, j_{i+1}, \cdots, j_{n}\right]$ of B^{*}, then B_{i}^{*} is isomorphic with B_{i}, the lattices $B_{1}^{*}, \cdots, B_{n}{ }^{*}$ are strongly coprime, and any element of B^{*} can be expressed as the meet of a finite num-

[^1]ber of elements in the various $B_{i}{ }^{*}$. Finally, if the B_{i} are B-lattices, then so \dagger is B^{*}.

Conversely, let B be any B-lattice, and let B_{1}, \cdots, B_{n} be any finite or transfinite sequence of strongly coprime sublattices of B such that any $b \in B$ can be expressed as the meet $\left(b_{i_{1}}, \cdots, b_{i_{m}}\right)$ of a finite number of $b_{i_{k}} \in B_{i_{k}}$.

For any $b \in B$ and $b^{\prime} \in B$ we can evidently so reorder the B_{i} that $b=\left(b_{1}, \cdots, b_{m}\right), \quad b^{\prime}=\left(b_{1}^{\prime}, \cdots, b_{m}^{\prime}\right)$, and $b \cap b^{\prime}=b^{\prime \prime}$ $=\left(b_{1}^{\prime \prime}, \cdots, b_{m}^{\prime \prime}\right)$, where $b_{i} \in B_{i}, b_{i}^{\prime} \in B_{i}, b_{i}^{\prime \prime} \in B_{i}$, and m is finite. But by (L2)-(L3), we have

$$
\left(b, b^{\prime}\right)=\left(\left(b_{1}, \cdots, b_{m}\right),\left(b_{1}^{\prime}, \cdots, b_{m}^{\prime}\right)\right)=\left(\left(b_{1}, b_{1}^{\prime}\right), \cdots,\left(b_{m}, b_{m}^{\prime}\right)\right)
$$

Further if we set $a_{i}=\left(b_{i}, b_{i}^{\prime}, b_{i}^{\prime \prime}\right)$, then

$$
a_{i} \cap b^{\prime \prime}=a_{i} \cap b \cap a_{i} \cap b^{\prime}=a_{i} \cap\left(b_{1}, \cdots, b_{m}\right) \cap a_{i} \cap\left(b_{1}^{\prime}, \cdots, b_{m}^{\prime}\right)
$$

whence by (L5), setting $c_{i}=\left(b_{1}, \cdots, b_{i-1}, b_{i+1}, \cdots, b_{m}\right)$, and c_{i}^{\prime} and $c_{i}^{\prime \prime}$ equal to the corresponding dashed expressions, we have

$$
\left(a_{i} \boldsymbol{\Lambda}_{c_{i}^{\prime \prime}}^{\prime \prime}, b_{i}^{\prime \prime}\right)=\left(a_{i} \boldsymbol{\cap} c_{i}, b_{i}\right) \boldsymbol{\cap}\left(a_{i} \boldsymbol{\Lambda}_{c_{i}^{\prime}}, b_{i}^{\prime}\right),
$$

whence, by strong coprimeness, after reduction, $b_{i}^{\prime \prime}=b_{i} \boldsymbol{\cap} b_{i}^{\prime}$.
That is, B is a homeomorphic image of the subdirect product $B^{*}=B_{1} \hat{x} \cdots \hat{x} B_{n}$. But if $b_{i}=b_{i}{ }^{\prime}$, and b^{*} in B^{*} is the image of $\left(b_{i}, b_{i}^{\prime}\right)$ of B_{i}, then $b^{*} \cap\left[b_{1}, \cdots, b_{n}\right]=b_{i} \neq b_{i}^{\prime}=b^{*} \cap\left[b_{1}^{\prime}, \cdots, b_{n}{ }^{\prime}\right]$, whence, by (L1), $\left[b_{1}, \cdots, b_{n}\right] \neq\left[b_{1}^{\prime}, \cdots, b_{n}^{\prime}\right]$, and the homeomorphism is an isomorphism. In summary, we have proved the following theorem.

Theorem 1. A given B-lattice B (with largest element) is isomorphic with the subdirect product $B_{1}^{*} \cdots B_{n}^{*}\left(B_{i}^{*}\right.$ any B-lattice with largest element) if and only if B contains strongly coprime sublattices B_{1}, \cdots, B_{n} respectively isomorphic with $B_{1}^{*}, \cdots, B_{n}^{*}$ such that any $b \in B$ can be expressed as a meet $\left(b_{i_{1}}, \cdots, B_{i_{m}}\right)$, where m is finite and $b_{i_{k}} \in B_{i_{k}}$.

Notice that if n is finite, then a subdirect product is a direct product; while if $n=2$, then strong coprimeness is equivalent to coprimeness.
4. Uniqueness Theory. Let L be any lattice (with a largest element), and suppose that L is isomorphic with two subdirect products $A_{1} \hat{x} \cdots \hat{x} A_{m}$ and $B_{1} \hat{x} \cdot \cdots \hat{x} B_{n}$. We know by the sec-

[^2]ond paragraph of § 3 , how to identify the A_{i} (and B_{i}) with strongly coprime sublattices of L in such a way that any element of L can be represented as the meet of a finite number of elements of the various A_{i} (or B_{i}). The reader can easily check the statement that, since (a_{i}, a_{j}) $=b_{k},\left(b_{k} \in B_{k}\right)$, if and only if $a_{i} \in B_{k}$ and $a_{j} \in B_{k}$, each B_{i} is the subdirect product of its intersections with the various A_{i}; this proves the following statement.

Theorem 2. If $L=A_{1} \hat{x} \cdots \hat{x} A_{m}=B_{1} \hat{x} \cdot \cdots \hat{x} B_{n}$ is any lattice, \dagger then $L=F_{1,1} \hat{x} \cdots \hat{x} F_{m, n}$, where $A_{i}=F_{i, 1} \hat{x} \cdots \hat{x} F_{i, n}$ and $B_{j}=F_{1, j} \hat{x} \cdots \hat{x} F_{m, j}$.

Corollary 1. A lattice has at most one expression as a subdirect product of factors not themselves subdirect products.

Corollary 2. A finite lattice has a unique expression as the direct product of lattices not themselves direct products of lattices with fewer elements. The factors of any expression of the lattice as a direct product are direct products of the factors of this special decomposition into prime factors.

These corollaries are of extremely general application. \ddagger We now assume in addition that L satisfies the following postulate.
(ϕ) Any sequence $a_{1}, a_{2}, a_{3}, \cdots$ of elements of L, such that $a_{k}<a_{k+1}$ for every k, is finite.

Well-order the expressions $L=L_{1}{ }^{i} \hat{x} \cdots \hat{x} L_{n}{ }^{i}$ of L as a subdirect product, and apply Theorem 2 iteratedly. If we concentrate our attention on the corresponding well-ordered set of meets $\left(a_{1}{ }^{i}, \cdots, a_{\alpha_{i}}{ }^{i}\right)=a$ representing a fixed $a \in L$ (each $a_{h}{ }^{i}$ lying in just one of the $L_{k}{ }^{j}$ for each $j \leqq i$, by Theorem 2), we see that the expression ($a_{1}{ }^{i}, \cdots, a_{\alpha_{i}}{ }^{i}$) undergoes§ in virtue of (ϕ) at most a finite number of transmutations. Hence we can proceed through limit-numbers, and, by transfinite induction, we have the following result.
\dagger By definition of subdirect product, either $m=n=1$ and the theorem is trivial, or the A_{i}, B_{j}, and L have largest elements.
\ddagger See Theorem 3.1 of the author's paper On the combination of subalgebras, Proceedings of the Cambridge PhilosophicalSociety, vol. 29 (1933), pp.441-464. This article will be cited in future references as "Subalgebras."
§ Each transmutation replaces an $a_{h^{i}}$ by the meet of $a_{h^{\prime}}{ }^{i+1}>a_{h}{ }^{i}$ and $a_{h^{\prime}}{ }^{i+1}>a_{h}{ }^{i}$.

Theorem 3. A lattice satisfying (ϕ) has one and only one expression as a subdirect product of factors not themselves subdirect products.

Theorem 3 can evidently be applied to the ideals in rings which satisfy the ideal-chain theorem.
5. Standard Exceptions to (L6). Let B be any B-lattice, suppose g_{1}, g_{2}, and g_{3} to be any three elements of B, and refer to Tables I-III of "Subalgebras"-only replacing $A_{i}, B_{i}, M_{i}, N_{i}$, C_{i}, F_{i}, and H_{i} by $a_{i}, b_{i}, m_{i}, n_{i}, c_{i}, f_{i}$, and h_{i}.

Suppose $c_{i}=c_{j}$ for some $i \neq j$. Then $a=\left(c_{i}, c_{j}\right)=c_{\imath} \cap c_{j}=b$, whence $\left(g_{1}, h_{1}\right)=\left(g_{1}, h_{1}, h_{2}, h_{3}\right)=\left(g_{1}, f_{1} \cap f_{2} \cap f_{3}\right)=\left(f_{2} \cap f_{3}\right) \cap\left(g_{1}, f_{1}\right)$ [by (L5)] $=f_{2} \cap f_{3} \cap f=f_{2} \cap f_{3}$, which is to say, $\left(g_{1}, g_{2}, \cap g_{3}\right)=\left(g_{1}, g_{2}\right)$ $\boldsymbol{n}\left(g_{1}, g_{3}\right)$. If therefore (L6) is violated at all, we must have some instance where the c_{k} are all distinct, yet $\left(c_{i}, c_{j}\right)=a$ and $c_{i} \boldsymbol{\cap} c_{j}=b$ for $i \neq j$, whence $\left(c_{1}, c_{2} \boldsymbol{\cap} c_{3}\right) \neq\left(c_{1}, c_{2}\right) \cap\left(c_{1}, c_{3}\right)$. This proves the following fact.

Theorem 4. If a B-lattice is not a C-lattice, it contains a sublattice of order five and fixed structure not a C-lattice.

Combining Theorem 4 with the result, due to Dedekind, \dagger that any lattice not a B-lattice contains a sublattice of order five and fixed structure not a B-lattice, we get the following result.

Corollary. If a lattice is not a C-lattice, it contains a sublattice of order five which is not a C-lattice.
6. Specialization by Induction. Suppose B of $\S 5$ satisfies condition (ϕ) of $\S 4$, and consider the exception referred to in Theorem 4. We can by (ϕ) choose $c_{1}^{*} \supset c_{1}$ covered by b (see $\S 2$). Theorems 8.1 and 9.1 of "Subalgebras" show us successively that c_{3} covers $\left(c_{1}{ }^{*}, c_{3}\right), b=c_{2} \boldsymbol{\Pi} c_{3}$ covers $c_{2}^{*}=c_{2} \boldsymbol{\cap}\left(c_{1}^{*}, c_{3}\right)$, hence c_{1}^{*} and c_{2}^{*} both cover $a^{*}=\left(c_{1}^{*}, c_{2}^{*}\right)$. Similarly $b=c_{3} \boldsymbol{\cap} c_{2}^{*}$ covers $c_{3}^{*}=c_{3} \boldsymbol{\cap}\left(c_{1}^{*}, c_{2}^{*}\right)$, and, since $c_{3}^{*} \supset a^{*},\left(c_{1}^{*}, c_{3}^{*}\right)=\left(c_{2}^{*}, c_{3}^{*}\right)=a^{*}$. This proves the following theorem.

Theorem 5. If B is any B-lattice satisfying (ϕ), then either B is a C-lattice or we can find a sublattice of B consisting of a least element $a^{*}, c_{1}^{*} \neq c_{2}^{*} \neq c_{3}^{*} \neq c_{1}^{*}$ covering a^{*}, and $b=c_{1}^{*} \cap c_{2}^{*}=c_{2}^{*} \cap c_{3}^{*}$ $=c_{3}^{*} \cap c_{1}^{*}$ covering c_{1}^{*}, c_{2}^{*}, and c_{3}^{*}.
\dagger Gesammelte Werke, 1931, vol. II, p. 255.
7. Facts about Ideals. Throughout, R will be understood to denote a commutative ring which has a principal unit l and satisfies the Basis Theorem. Our notation will be that of van der Waerden \dagger except that we shall denote by (A, B) the l.c.m., and by $A \cap B$ the g.c.f., of any two given ideals A and B. This is the inverse of van der Waerden's notation.

The following are either known or immediate corollaries of known results:
(1). The only ideals in R are R and 0 if, and only if, R is a field.
(2). If I is a largest ideal in R, then $0: I$ is a least ideal if and only if it is a principal ideal.
(3). Any ideal I covered by R is a prime ideal.
8. Application of Theorem 1. On the basis of Theorem 1, it is possible to reconstruct the combinatorial theory of an important class of ideals.

By an ideal of genus 1 will be meant any ideal I which contains an appropriate finite product $P_{1^{n_{1}}} \cdots P_{\omega}{ }^{{ }^{\omega}}$ (where P_{i} denotes any ideal covered by R). We shall prove the following result.

Theorem 6. The ideals of genus 1 in R are a B-lattice, which is the subdirect product of the sublattices $\mathfrak{B}_{1}, \mathfrak{B}_{2}, \mathfrak{B}_{3}, \cdots$ of the primary ideals under the ideals $P_{1}, P_{2}, P_{3}, \cdots$ covered by R.

That they are a lattice of which the \mathfrak{B}_{i} are sublattices is obvious, while that they are a B-lattice follows from Theorem 27.1 of "Subalgebras."

But the \mathfrak{S}_{i} are strongly coprime, since if Q_{1}, \cdots, Q_{m} satisfy the relation $Q_{k} \nsubseteq P_{i}$ for every k, and Q is primary under P_{i}, then $Q \cap\left(Q_{1}, \cdots, Q_{m}\right)=R$, being contained in no ideal covered by R. And by a theorem of E. Noether, any ideal can be expressed as the meet of a finite number of primary ideals. Theorem 6 is now merely a translation of Theorem 1 in terms of ideals.
9. Application of Theorem 5. It is not difficult to show from known results the following theorem.

Theorem 7. If R contains a largest ideal I, and another ideal $A \subset I$ for which $(A: I) / A$ is not a principal ideal, then the ideals of R are not a C-lattice.

[^3]For since l, commutativity, and the Basis Theorem are preserved under homeomorphism, we can assume $A=0$; while by (2) we can assume ($0: I$) is not a least ideal.

By the Ideal-chain Theorem we can further choose a largest subideal $J>0$ in $0: I$, and then $x \notin J, y \notin R x$ satisfying $y \in J$, and $w=x+y$. But a second homeomorphism permits us to assume $(R x, R y)=0$, yet $x \neq 0, y \neq 0$. This makes it obvious that $(R x, R y) \cap R w \neq(R x \cap R w, R y \cap R w) \exists x$.

Conversely, suppose the ideals of R are not a C-lattice. By Theorem $5, R$ has a homeomorphic image R^{*} which contains three least ideals $A \neq B \neq C$ such that $A \cap B=B \cap C=C \cap A$.

Consider $R^{*} /(0: A)$; it is a field, whence, by (1), $0: A$, and similarly $0: B$ and $0: C$, are largest ideals \dagger in R. For if $r a \neq 0$ [$a \in A, r \in R^{*}$], then $r a \in A$ generates A; consequently r^{-1} exists such that $r^{-1} r a=a$ and $r^{-1} r \equiv l(0: A)$.

Again, if $0 \neq b \in B \subset A \cap C$, then $b=a+c$, where (since $a=0$ or $b=0$ would imply $B=C$ or $B=A) a \neq 0, c \neq 0$. And since $(A, C)=0,0=r b=r(a+c)=r a+r c$ implies $r a=r c=0$. Consequently $0: B \subset(0: A, 0: C)$, and $0: A=0: B=0: C=I$, where I is a largest ideal in R^{*}, yet, by (2), $0: I$ is not a principal ideal in R^{*}. Referring back to the corresponding ideals in R, we see that R does not satisfy the conclusions of Theorem 7 .

We can combine Theorem 7, its converse, and Theorem 25.2 of "Subalgebras" in the following theorem.

Theorem 8. For the ideals of R to be isomorphic (with respect to l.c.m. and g.c.f.) with a system of point sets (with respect to sum and product), it is necessary and sufficient that if I is any largest ideal in R, and $A \subset I$ another ideal, then $(A: I) / A$ is a principal ideal in R / A.

It is a corollary that the identity $A:(A: Q)=(Q \cap A)$ upon ideals is a sufficient condition for distributive combination.

Harvard University
$\dagger R=0: A$ is of course excluded since $l \ddagger 0: A$.

[^0]: \dagger Presented to the Society, March 30, 1934.
 \ddagger Hausdorff, Mengenlehre, 1927, p. 77.

[^1]: \dagger In fact, if the number of elements of L is finite, this follows from (L1)(L3.)
 \ddagger A sublattice A of L is any subsystem such that $a \in A$ and $a^{\prime} \in A$ imply $a \cap a^{\prime} \in A$ and $\left(a, a^{\prime}\right) \in A$.
 § That is, in which the subscripts run through transfinite ordinals.
 || By the "sublattice generated by" is meant the least sublattice containing.

[^2]: \dagger The identical relations (L2)-(L5) can be checked seriatim.

[^3]: \dagger Moderne Algebra, 1930-31; especially vol. 2, Chap 12, in which will be found the Basis and Ideal-chain Theorems.

