CYCLIC FIELDS OF DEGREE p^{n} OVER F OF CHARACTERISTIC p^{*}

BY A. A. ALBERT

1. Introduction. The theory of cyclic fields is a most interesting chapter in the study of the algebraic extensions of an abstract field F. When F is a modular field of characteristic p, a prime, particular attention is focussed on the case of cyclic fields Z of degree p^{n} over F. Such fields of degree p, p^{2} were determined by E. Artin and O. Schreier. \dagger

In the present paper I shall give a determination of all cyclic fields Z of degree p^{n} over F of characteristic p.
2. Normed Equations. An equation

$$
\begin{equation*}
\lambda^{p}=\lambda+a, \quad(a \operatorname{in} F) \tag{1}
\end{equation*}
$$

is called a normed equation. If x is any root of (1), then so are $x+1, x+2, \cdots, x+p-1$. Using this fact, Artin-Schreier have proved the following lemmas.

Lemma 1. A normed equation is either cyclic or has all of its roots in F. Every cyclic field of degree p over F may be generated by a root of a normed equation.

Lemma 2. Let $F(x)$ be cyclic of degree p over F,

$$
\begin{equation*}
x^{p}=x+a, \quad(a \text { in } F) \tag{2}
\end{equation*}
$$

Then a quantity y of $F(x)$ which is not in F satisfies a normed equation if and only if

$$
\begin{equation*}
y=k x+b, \quad(k=1,2, \cdots, p ; b \text { in } F) \tag{3}
\end{equation*}
$$

Lemma 3. Let cin Z have degree $t \leqq p-2$ in x. Then there exists a quantity $g=g(x)$ in Z such that

$$
\begin{equation*}
g(x+1)-g(x)=c \tag{4}
\end{equation*}
$$

Moreover, g is uniquely determined up to an additive constant in F.

[^0]By applying Lemmas 1, 2, 3, Artin-Schreier proved the following fact.

Lemma 4. Every cyclic field Z of degree p over F is the sub-field of cyclic overfields Z_{2} of degree p^{2} over F. If $Z_{1}=F\left(x_{1}\right), x_{1}{ }^{p}=x_{1}+a_{1}$, a_{1} in F, then all such fields Z_{2} are obtained by

$$
\begin{equation*}
Z_{2}=F\left(x_{2}\right), \quad x_{2}^{p}=x_{2}+a_{2}, \quad\left(a_{2} \text { in } Z_{1}\right) \tag{5}
\end{equation*}
$$

where a_{2} ranges over all solutions of (4) in the case

$$
\begin{equation*}
c=\left(x_{1}+a_{1}\right)^{p-1}-x_{1}^{p-1} \tag{6}
\end{equation*}
$$

A generating automorphism S of Z_{2} is given by

$$
\begin{equation*}
x_{1}^{S}=x_{1}+1, \quad x_{2}^{S}=x_{2}+x_{1}^{p-1} \tag{7}
\end{equation*}
$$

so that
(8) $x_{2} s^{s^{\nu}}=x_{2}+x_{1}^{p-1}+\left(x_{1}+1\right)^{p-1}+\cdots+\left(x_{1}+\nu-1\right)^{p-1}$,

$$
(\nu=1,2, \cdots)
$$

and in particular

$$
\begin{equation*}
x_{2} s^{p}=x_{2}+x_{1}{ }^{p-1}+\cdots+\left(x_{1}+p-1\right)^{p-1}=x_{2}-1 \tag{9}
\end{equation*}
$$

As an immediate corollary of (9) we have the following lemma.

Lemma 5. Let $Z=F(x), x^{p}=x+a$, be cyclic of degree p over F. Then

$$
\begin{align*}
T_{Z \mid F}\left(x^{p-1}\right) \equiv & x^{p-1}+(x+1)^{p-1} \tag{10}\\
& +\cdots+(x+p-1)^{p-1}=-1
\end{align*}
$$

3. Generating Automorphisms. Now let $Z=Z_{n}$ be any cyclic field of degree p^{n} over F and let S be a generating automorphism of the cyclic automorphism group of Z. It is well known that

$$
\begin{equation*}
Z_{n}>Z_{n-1}>\cdots>Z_{1}>Z_{0}=F \tag{11}
\end{equation*}
$$

where Z_{i} is uniquely determined, is cyclic of degree p^{i} over F, cyclic of degree p over Z_{i-1}. Moreover the automorphism S applied in Z_{i} may be taken as generating the automorphism group of Z_{i} with

$$
\begin{equation*}
Q_{i}=S^{p^{i}} \tag{12}
\end{equation*}
$$

as identity automorphism for Z_{i}. In fact Z_{i} is defined as the set of all quantities of Z_{n} (and no others) unaltered by the automorphism Q_{i}.

We may consider Z_{i} as cyclic of degree p over Z_{i-1}. Then the group of Z_{i} over Z_{i-1} is evidently generated by Q_{i-1},

$$
\begin{equation*}
\left(Q_{i-1}\right)^{p}=Q_{i} \tag{13}
\end{equation*}
$$

If b_{i} is any quantity of Z_{i}, then we write

$$
\begin{equation*}
T_{Z_{i} \mid F}\left(b_{i}\right)=b_{i}+b_{i} s+\cdots+b_{i} s^{p^{i}-1} \tag{14}
\end{equation*}
$$

We then evidently have

$$
\begin{equation*}
T_{Z_{i} \mid F}\left(b_{i}\right)=T_{Z_{i-1} \mid F}\left[T_{Z_{i} \mid Z_{i-1}}\left(b_{i}\right)\right] \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{Z_{i} \mid Z_{i-1}}\left(b_{i}\right)=b_{i}+b_{i}^{Q_{i-1}}+\cdots+b_{i}^{Q_{i}^{p-1}-1} \tag{16}
\end{equation*}
$$

is evidently in Z_{i-1}.
The field Z_{i} is cyclic of degree p over Z_{i-1} so that, by Lemma 1,

$$
\begin{equation*}
Z_{i}=Z_{i-1}\left(x_{i}\right), \quad x_{i}^{p}=x_{i}+a_{i}, \quad\left(a_{i} \text { in } Z_{i-1}\right) \tag{17}
\end{equation*}
$$

Moreover, x_{i} is not in Z_{i-1}, so that $F\left(x_{i}\right)$ is in Z_{i} but not in Z_{i-1}. The cyclic field Z_{i-1} contains every proper sub-field of Z_{i} and hence must contain $F\left(x_{i}\right)$, if $F\left(x_{i}\right)$ is a proper sub-field of Z_{i}. Thus, in fact, we have

$$
\begin{equation*}
Z_{i}=F\left(x_{i}\right) \tag{18}
\end{equation*}
$$

We may now prove the following fact.
Lemma 6. Let $b_{i+1}=\left(x_{1} x_{2} \cdots x_{i}\right)^{p-1}=x_{i}^{p-1} b_{i}$. Then b_{i+1} is in Z_{i} and

$$
\begin{equation*}
T_{Z_{i} \mid F}\left(b_{i+1}\right)=(-1)^{i} \tag{19}
\end{equation*}
$$

For b_{i} is in Z_{i-1} and is unaltered by the automorphism Q_{i-1}. Hence $T_{Z_{i} \mid Z_{i-1}}\left(b_{i+1}\right)=b_{i} T_{Z_{i} \mid Z_{i-1}}\left(x_{i}^{p-1}\right)$. Since Q_{i-1} is a generating automorphism of Z_{i} over Z_{i-1}, some power S_{i} of Q_{i-1} carries x_{i} into $x_{i}+1$. But then Lemma 5 implies $T_{Z_{i} \mid Z_{i-1}}\left(x_{i}{ }^{p-1}\right)=-1$. Hence

$$
\begin{equation*}
T_{Z_{i} \mid F}\left(b_{i+1}\right)=T_{Z_{i-1} \mid F}\left[b_{i} T_{Z_{i} \mid Z_{i-1}}\left(x_{i}^{p-1}\right)\right]=-T_{Z_{i-1} \mid F}\left(b_{i}\right) \tag{20}
\end{equation*}
$$

By repeated application of this recursion formula, we evidently obtain (19).

Let S be a generating automorphism of Z_{n}. Then

$$
\left(x_{i}^{S}\right)^{p}=x_{i}^{S}+a_{i}^{S} .
$$

But evidently $x_{i}{ }^{S}$ is a primitive quantity of Z_{i} of degree p over Z_{i-1}, so that, by Lemma 2,

$$
\begin{equation*}
x_{i}^{S}=k_{i} x_{i}+b_{i}, \quad\left(k_{i}=1,2, \cdots, p-1 ; b_{i} \text { in } Z_{i-1}\right) \tag{21}
\end{equation*}
$$

Then $x_{i}{ }^{S^{2}}=k_{i} x_{i}{ }^{S}+b_{i}{ }^{S}=k_{i}{ }^{2} x_{i}+b_{i 2}$, and finally $x_{i}{ }^{S^{\nu}}=k_{i}{ }^{\nu} x_{i}+b_{i \nu}$. Hence, if $m=p^{n}$, we have $x_{i}{ }^{S^{m}}=k_{i}{ }^{m} x_{i}+b_{i m}=x_{i}$. But then $k_{i}{ }^{m}=1$. Since $k_{i}{ }^{p}=k_{i}$, we evidently have $k_{i}{ }^{m}=k_{i}=1$. Thus

$$
\begin{equation*}
x_{i}^{S}=x_{i}+b_{i}, \quad(i=1,2, \cdots, n) \tag{22}
\end{equation*}
$$

Moreover,

$$
\begin{gathered}
\left(x_{i}^{S}\right)^{p}=x_{i}^{p}+b_{i}^{p}=x_{i}+a_{i}+b_{i}^{p}=x_{i}+b_{i}+a_{i}^{S} \\
a_{i}^{S}-a_{i}=b_{i}^{p}-b_{i} .
\end{gathered}
$$

The automorphism Q_{i-1} is a generating automorphism of Z_{i} over Z_{i-1} and replaces x_{i} by $x_{i}+h_{i},\left(h_{i}=1,2, \cdots, p-1\right)$. But

$$
x_{i}^{Q i-1}=x_{i}+T_{z_{i-1} \mid F}\left(b_{i}\right)=x_{i}+h_{i},
$$

so that

$$
\begin{align*}
& T_{z_{i-1} \mid F}\left(b_{i}\right)=h_{i} \neq 0 \\
& \quad\left(h_{i}=1,2, \cdots, p-1 ; i=1, \cdots, n\right) . \tag{24}
\end{align*}
$$

Conversely, let b_{i} satisfy (24), a_{i} be determined by (23), and let $x_{1}{ }^{p}=x_{1}+a_{1}$ be irreducible in F. Then $Z_{n}=F\left(x_{n}\right)$ is cyclic of degree p^{n} over F when Z_{n} is defined by (17), $Z_{i}=F\left(x_{i}\right)$, and S generates the automorphism group of Z_{n}. For assume this true for $Z_{1}, Z_{2}, \cdots, Z_{n-1}$, and define $Z_{n}=Z_{n-1}\left(x_{n}\right)$. The degree of Z_{n} over F is then p^{n}, for otherwise x_{n} is in Z_{n-1}, by Lemma 1, and hence $\left(x_{n}\right)^{Q^{n-1}}=x_{n}$, contrary to (24) and (22). Moreover, (22) defines an automorphism S of Z_{n} which has order at least p^{n-1}, since S generates the automorphism group of Z_{n-1}. But S actually has order p^{n}, since $Q_{n-1}=S^{p^{n-1}}$ alters x_{n}. Hence the group of automorphisms of Z_{n} has a cyclic sub-group of order p^{n}, the degree of Z_{n}, and Z_{n} is cyclic. It follows that $Z_{n}=F\left(x_{n}\right)$. We have proved the following result.

Lemma 7. Every cyclic field of degree p^{n} over F is generated by a quantity x_{n} such that

$$
\begin{equation*}
x_{i}^{p}=x_{i}+a_{i}, \quad a_{i} \text { in } Z_{i-1}=F\left(x_{i-1}\right), \quad(i=1,2, \cdots, n) \tag{25}
\end{equation*}
$$

and $x_{1}{ }^{p}=x_{1}+a_{1}$ is irreducible in F. If S is a generating automorphism of the group of Z_{n}, then

$$
\begin{align*}
& x_{i}^{S}=x_{i}+b_{i}, \quad T_{z_{i} \mid F}\left(b_{i+1}\right)=h_{i} \tag{26}\\
&\left(h_{i}=\right. \\
&1, \cdots, p-1 ; i=1, \cdots, n)
\end{align*}
$$

with

$$
\begin{equation*}
b_{i}^{p}-b_{i}=a_{i}^{S}-a_{i}, \quad(i=2, \cdots, n) \tag{27}
\end{equation*}
$$

Conversely, every field Z_{n} defined by (25), (26), (27) and $x_{1}{ }^{p}=x_{1}+a$ irreducible in F, is cyclic of degree p^{n} over F with generating automorphism S given by (26).

Let c_{i} be an arbitrary quantity of Z_{i} and write

$$
c_{i}=\sum_{j_{r}=0,1, \cdots, p-1} \lambda_{j_{1} j_{2} \cdots j_{i}} x_{1}{ }^{j_{1}} x_{2}{ }^{j_{2}} \cdots x_{i}{ }^{{ }^{i} i}
$$

with coefficients λ in F. If $\lambda_{p-1},{ }_{p-1}, \ldots, p-1=0$, we call c_{i} a nonmaximal quantity of Z_{i}. We may prove the following lemma.

Lemma 8. If $b_{i}=\left(x_{1} x_{2} \cdots x_{i-1}\right)^{p-1}$, the polynomials

$$
\begin{align*}
& c_{i-1}= b_{i}^{p}-b_{i}=\left[\left(x_{1}+a_{1}\right)\left(x_{2}+a_{2}\right) \cdots\left(x_{i-1}+a_{i-1}\right)\right]^{p-1} \\
&-\left(x_{1} x_{2} \cdots x_{i-1}\right)^{p-1}, \tag{28}\\
&(i=2, \cdots, n),
\end{align*}
$$

are non-maximal and (27) have solutions a_{i} in Z_{i-1} which are unique up to an arbitrary additive constant in F. Then the a_{i} define cyclic fields $Z_{i},(i=2, \cdots, n)$, containing Z_{1}, where Z_{i} is cyclic of degree p^{i} over F. In fact, if c_{i} is any non-maximal quantity of Z_{i}, there exist solutions d_{i} in Z_{i} of

$$
\begin{align*}
c_{i}=d_{i}^{S}-d_{i}, \quad d_{i}^{S} \equiv d_{i}\left(x_{1}+b_{1}, \cdots,\right. & \left.x_{i}+b_{i}\right) \tag{29}\\
& (i=1, \cdots, n)
\end{align*}
$$

which are unique up to an additive constant in F.
For evidently $T_{Z_{i} \mid F}\left(b_{i+1}\right)=(-1)^{i}=h_{i} \neq 0$, so that $(26)_{2}$ are satisfied. It is thus sufficient to prove the existence of the a_{i} satisfying (27) and hence sufficient to prove the existence and uniqueness of solutions of (29) of which (27) is a special case.

We know that Lemma 8 is true for $n=1,2^{*}$ by Lemmas $3,4$. Hence assume Lemma 8 true in its entirety for Z of degree $p, p^{2}, \cdots, p^{i-1}$. Then, by our assumption (29), there exists a Z_{i} of degree p^{i} over F, the equation (29) has a unique solution in Z_{i-1}, and we wish to prove (29) also has a unique solution in Z_{i} and hence the existence of Z_{i+1}.

Write

$$
c_{i}=\lambda_{t} x_{i}{ }^{t}+\cdots+\lambda_{0}, \quad\left(\lambda_{j} \text { in } Z_{i-1}\right)
$$

If λ_{t} is a non-maximal quantity of Z_{i-1}, then, by our above assumption, $\lambda_{t}=\mu_{t}^{S}-\mu_{t},\left(\mu_{t}\right.$ in $\left.Z_{i-1}\right)$. But then

$$
\left(\mu_{t} x_{i}^{t}\right)^{S}-\mu_{t} x_{i}^{t}=\mu_{t}^{S}\left(x_{i}+b_{i}\right)^{t}-\mu_{t} x_{i}^{t}=\lambda_{t} x_{i}^{t}+\cdots
$$

so that $c_{i}-\left[\left(\mu_{t} x_{i}\right)^{S}-\left(\mu_{t} x_{i}^{t}\right)\right]$ has degree at most $t-1$.
If λ_{t} is maximal, then $t<p-1$ and c_{i} has leading term

$$
\lambda\left(x_{1} x_{2} \cdots x_{i-1}\right)^{p-1} x_{i}{ }^{t}=\lambda b_{i} x_{i}{ }^{t}, \quad \lambda \neq 0 \text { in } F .
$$

But then $t+1 \neq 0$,

$$
\begin{aligned}
\lambda(t+1)^{-1}\left[\left(x_{i}^{t+1}\right) S-x_{i}^{t+1}\right] & =\lambda(t+1)^{-1}\left[\left(x_{i}+b_{i}\right)^{t+1}-x_{i}^{t+1}\right] \\
& =\lambda b_{i} x_{i}{ }^{t}+\cdots,
\end{aligned}
$$

so that $c_{i}-\left\{\left[\lambda(t+1)^{-1} x_{i}{ }^{t+1}\right]^{S}-\left[\lambda(t+1)^{-1} x_{i}{ }^{t+1}\right]\right\}$ has degree at most t in x_{i} and non-maximal leading coefficient. A repeated application of the above process may evidently be made to obtain a quantity δ_{i} in Z_{i} such that $c_{i}-\left(\delta_{i}{ }^{S}-\delta_{i}\right)=\gamma_{i 0},\left(\gamma_{i 0}\right.$ in $\left.Z_{i-1}\right)$. But $\gamma_{i 0}$ may be taken non-maximal as above with $t=0, t+1=1$, and hence

$$
\gamma_{i 0}=\gamma_{i}^{S}-\gamma_{i}, \quad c_{i}=d_{i}^{S}-d_{i}, \quad d_{i}=\delta_{i}+\gamma_{i}
$$

Now let $c_{i}=d_{i}{ }^{S}-d_{i}=d_{i 0}{ }^{S}-d_{i 0}$. Then $\left(d_{i 0}-d_{i}\right)^{S}=d_{i 0}{ }^{S}-d_{i}{ }^{S}$ $=d_{i 0}-d_{i}$. The only quantities of Z_{i} unaltered by S are quantities of F. Hence $d_{i 0}-d_{i}=\lambda$ in F. We have proved Lemma 8. We shall now prove our principal theorem.

Theorem. Every cyclic field Z_{1} of degree p over F of characteristic p is the sub-field of cyclic overfields of degree p^{n}. Write

$$
\begin{equation*}
Z_{1}=F\left(x_{1}\right), \quad x_{1}^{p}=x_{1}+a_{1}, \quad\left(a_{1} \text { in } F\right) \tag{30}
\end{equation*}
$$

[^1]Then all such fields Z_{n} are given by
(31) $Z_{i}=F\left(x_{i}\right), x_{i}^{p}=x_{i}+a_{i}, a_{i}$ in $F\left(x_{i-1}\right),(i=2, \cdots, n)$, where a_{i} is the unique (up to an arbitrary additive constant in F) solution of

$$
\begin{align*}
& a_{i}\left(x_{1}+b_{1}, \cdots, x_{i-1}+b_{i-1}\right)-a_{i} \\
& \quad=\left[\left(x_{1}+a_{1}\right) \cdots\left(x_{i-1}+a_{i-1}\right)\right]^{p-1}-\left(x_{1} x_{2} \cdots x_{i-1}\right)^{p-1} \\
& b_{i} \equiv\left(x_{1} x_{2} \cdots x_{i-1}\right)^{p-1}, \quad(i=2, \cdots, n) . \tag{32}
\end{align*}
$$

Conversely, all fields defined by (30), (31), (32) with $x_{1}{ }^{p}=x_{1}+a_{1}$ irreducible in F are cyclic of degree p^{n} with generating automorphism S given by

$$
\begin{equation*}
x_{0}=1, x_{i}^{S}=x_{i}+\left(x_{0} x_{1} x_{2} \cdots x_{i-1}\right)^{p-1}, \quad(i=1, \cdots, n) \tag{33}
\end{equation*}
$$

For we have proved that the fields defined above are cyclic, in Lemma 8. Assume now, conversely, that Z_{n} is cyclic of degree p^{n} over F and that we have proved the above result for its subfields Z_{1}, \cdots, Z_{n-1}. Let $x_{n}{ }^{S}=x_{n}+d_{n}$ by Lemma 7 and write $d_{n}=\beta b_{n}+g_{n}$, where $b_{n}=\left(x_{1} x_{2} \cdots x_{i-1}\right)^{p-1}, \beta$ is in F, and $-g_{n}$ is a non-maximal polynomial in Z_{n-1}. By Lemma 8, we have also

$$
-g_{n}=h_{n} S-h_{n}, \quad\left(h_{n} \text { in } Z_{n-1}\right)
$$

We then let $y_{n}=x_{n}+h_{n}$, so that

$$
y_{n}{ }^{S}=x_{n}{ }^{S}+h_{n}{ }^{S}=x_{n}+\beta b_{n}+g_{n}+h_{n}-g_{n}=y_{n}+\beta b_{n} .
$$

Moreover, $Z_{n}=F\left(x_{n}\right)=F\left(y_{n}\right)$, since it is evident that y_{n} generates $Z_{n-1}\left(x_{n}\right)$ over Z_{n-1} and hence also $F\left(x_{n}\right)$, by Lemma 7 (in which we proved $\left.Z_{n-1}\left(x_{n}\right)=F\left(x_{n}\right)\right)$.

But now we have shown that we may take $d_{n}=\beta b_{n}$ without loss of generality. Since

$$
\begin{aligned}
& T_{Z_{n-1} \mid F}\left(d_{n}\right)=\beta T_{Z_{n-1} \mid F}\left(b_{n}\right)=(-1)^{n-1} \beta=k_{n} \\
&\left(k_{n}=1, \cdots, p-1\right)
\end{aligned}
$$

the quantity β is a non-zero integer. There exists an integer γ such that $\gamma \beta=1$ and, if we write $z_{n}=\gamma x_{n}$, we have $z_{n}{ }^{S}=\gamma x_{n}{ }^{S}$ $=\gamma\left(x_{n}+\beta b_{n}\right)=z_{n}+b_{n}$. Evidently $F\left(x_{n}\right)=F\left(z_{n}\right)$ while z_{n} satisfies (33). By Lemma 7, (27), we have also (32) for $i=n$; and we have proved the theorem.

The Institute for Advanced Study

[^0]: * Presented to the Society, March 30, 1934.
 \dagger Hamburg Abhandlungen, vol. 5 (1926-7), pp. 225-231.

[^1]: * Note that (28) is true for $n=2$ by Lemma 3, is vacuous for $n=1$. Hence Z_{2} is defined by Lemma 4. This is the first step in our induction, the case $i=2$.

