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CYCLIC FIELDS OF D E G R E E ƒ>» OVER F OF 
CHARACTERISTIC p* 

BY A. A. ALBERT 

1. Introduction. The theory of cyclic fields is a most interest
ing chapter in the study of the algebraic extensions of an ab
stract field F. When F is a modular field of characteristic p, 
a prime, particular attention is focussed on the case of cyclic 
fields Z of degree pn over F. Such fields of degree p, p2 were 
determined by E. Artin and O. Schreier.f 

In the present paper I shall give a determination of all cyclic 
fields Z of degree pn over F of characteristic p. 

2. Normed Equations. An equation 

(1) X* = X + a, {a in F), 

is called a normed equation. If x is any root of (1), then so are 
x + 1 , x+2, • • • , x+p — 1. Using this fact, Artin-Schreier have 
proved the following lemmas. 

LEMMA 1. A normed equation is either cyclic or has all of its 
roots in F. Every cyclic field of degree p over F may be generated 
by a root of a normed equation. 

LEMMA 2. Let F(x) be cyclic of degree p over F, 

(2) xp = x + a, (a in F). 

Then a quantity y of F(x) which is not in F satisfies a normed 
equation if and only if 

(3) y = kx + b, (k = 1, 2, • • • , p; b in F). 

LEMMA 3. Let c in Z have degree t^p — 2 in x. Then there exists 
a quantity g = g(x) in Z such that 

(4) g{x + 1) - g(x) = c. 

Moreover, g is uniquely determined up to an additive constant in F. 

* Presented to the Society, March 30,1934. 
t Hamburg Abhandlungen, vol. 5 (1926-7), pp. 225-231. 
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By applying Lemmas 1, 2, 3, Artin-Schreier proved the fol
lowing fact. 

LEMMA 4. Every cyclic field Z of degree p over F is the sub-field 
of cyclic overfields Z2 of degree p2 over F. If Z\ = F(xi), %\v = # i+a i , 
ai in F, then all such fields Z2 are obtained by 

(5) Z2 = F(x2), x2
p = #2 + #2, (a2 inZi), 

where a2 ranges over all solutions of (4) in the case 

(6) c = (xi + tfi)p~1 — x?-1. 

A generating automorphism S of Z2 is given by 

(7) xfl = Xi + 1, #2S = #2 + ffl*-"1, 

(8) ^ = *2 + xf1 + («i + l )^1 + • - + (xi + v- l)p~\ 
(y = 1, 2, • • • ), 

and iw particular 

(9) ^ = *2 + ^ P - I + • . • + (xi + p - l)^"1 = x2 - 1. 

As an immediate corollary of (9) we have the following 
lemma. 

LEMMA 5. Let Z = F(x)> xp = x+a, be cyclic of degree p over F. 
Then 

TZ\F(XV-1) S x*-1 + (x + l)*-1 

(10) i v y T V 

+ • • • + ( * + * - 1 )^= - 1. 
3. Generating Automorphisms. Now let Z = Zn be any cyclic 

field of degree £w over F and let S be a generating automorphism 
of the cyclic automorphism group of Z. I t is well known that 

(11) Zn>Zn^> • • • >Z1>ZQ =F, 

where Z» is uniquely determined, is cyclic of degree p{ over F, 
cyclic of degree p over Z»_i. Moreover the automorphism S 
applied in Z» may be taken as generating the automorphism 
group of Zi with 

(12) Qi = S*>< 
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as identity automorphism for Zt-. In fact Z» is defined as the 
set of all quantities of Z n (and no others) unaltered by the 
automorphism Qi. 

We may consider Zi as cyclic of degree p over Zf_i. Then the 
group of Zi over Zi_i is evidently generated by Qi-i, 

(13) (Q<-i)* = Qi. 

If bi is any quantity of Zi, then we write 

(14) TZi\F(bi) = h + V + • ' • + ^pt'~1-

We then evidently have 

(15) TZi\F(bi) = Tzi-dFlTziiZi-tiPi)], 

where 

(16) r * , , * , ^ , ) = bi + bp<-i + . . . + J/£* 

is evidently in Z»_i. 
The field Zi is cyclic of degree p over Z*_i so that, by Lemma 

1, 

(17) Zi = Zi-i(xi), xf = #,- + at-, (a» inZ t '_i). 

Moreover, Xi is not in Z»_i, so that jF(a;»-) is in Zi but not in 
Zi-i. The cyclic field Z t_i contains every proper sub-field of Zi 
and hence must contain F(xi), if F(xi) is a proper sub-field of Z». 
Thus, in fact, we have 

(18) Zi = F(xi). 

We may now prove the following fact. 

LEMMA 6. Let bi+i = (xix% • • • Xi)î,~1 = Xiî>_1&i. TÂew bi+i is in 
Ziand 

(19) TzMbi+i) = ( - D ' . 

For bi is in Z{_i and is unaltered by the automorphism 
Qi_i. Hence TZi\ZiJJ>n-i) =&i^zj|zi_1(^ip~1). Since Q;_i is a gener
ating automorphism of Zi over Z;_i, some power Si of <2*-i car
ries Xi into Xi+1. But then Lemma 5 implies Tz.\Zil(xiv~l) = — 1. 
Hence 

(20) TZilF(bi+1) = Tz^AliTWi-ifrr1)] = - TZi_l{F(bi). 
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By repeated application of this recursion formula, we evidently 
obtain (19). 

Let S be a generating automorphism of Zn. Then 

(x<s)* = x{s + ajs. 

But evidently xf is a primitive quantity of Zi of degree p 
over Zi-i, so that, by Lemma 2, 

(21) x%& = kiXi + biy (ki = 1, 2, • • • , p - 1; bi inZ,-_i). 

Then XiS2 = kiXiS+bf = ki2Xi+bi2l and finally xf = kivXi+biv. 
Hence, if m=pn

f we have xfm = kimXi+bim = Xi. But then 
kim=l. Since kip = ki, we evidently have kim = ki = l. Thus 

(22) xfi = *< + i<, (i = 1, 2, • • • , ») . 

Moreover, 

(a^)* = #* + b? = #< + ai + i.* = OP,- + bi + at£, 

(23) a%* - at = ^ - bt. 

The automorphism <2;_i is a generating automorphism of 
Zi over Zi_i and replaces Xi by Xi+hiy (hi = 1, 2, • • •,ƒ> — 1). But 

a/3*-i = a* + TZi_l]F(bi) = s< + A,-, 

so that 

7 V l I F ( W = A< * 0 

(A, = 1,2, • " , # - l ; f = 1, • • • , » ) . 

Conversely, let 5» satisfy (24), ai be determined by (23), and 
let Xip = Xi-\-ai be irreducible in F. Then Zn = F(xn) is cyclic of 
degree pn over 7? when Zn is defined by (17), Z» = F(xi)f and 5 
generates the automorphism group of Zn . For assume this true 
for Zi, Z2, • • • , Zn_i, and define Zn = Zn_i(#n). The degree of 
Zn over F is then £n, for otherwise xn is in Zn_i, by Lemma 1, 
and hence (xn)

Qn~l = xn, contrary to (24) and (22). Moreover, 
(22) defines an automorphism S of Zn which has order at least 
pn~l

f since S generates the automorphism group of Z„_i. But S 
actually has order pn, since Qn-i = SpH alters xn. Hence the 
group of automorphisms of Zn has a cyclic sub-group of order 
pn, the degree of Zn , and Zn is cyclic. I t follows that Zw = F(xn). 
We have proved the following result. 
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LEMMA 7. Every cyclic field of degree pn over F is generated by a 
quantity xn such that 

(25) x? = Xi + ai} a{ inZ^ = F(x{-i), (i = 1, 2, • • • , n), 

and Xip = xi+ai is irreducible in F. If S is a generating automor
phism of the group of Zw, then 

. . %is = %% + fa, Tzi\F(bi+i) = hi, 
(26) 

(hi = 1, • • • , p - 1; i = 1, • • • , n), 
with 

(27) bf - bi = afi - a{, (i = 2, • • • , n). 

Conversely, every field Zn defined by (25), (26), (27) and Xip = Xi+a 
irreducible in F, is cyclic of degree pn over F with generating 
automorphism S given by (26). 

Let Ci be an arbitrary quantity of Zi and write 

with coefficients X in F. If Xp_i, 2,_i,...,p_i = 0, we call Ci a non-
maximal quantity of Zit We may prove the following lemma. 

LEMMA 8. If bi = (xix2 • • • Xi-i)p~l, the polynomials 

Ci-i = be — bi = [(xi + ax)(x2 + a2) • • • (x;_i + a^i)]^1 

(28) 
- (xxx2 - - • at'-i)*""1, (i = 2, • • • , »), 

are non-maximal and (27) fowe solutions ai in Z^_i which are 
unique up to an arbitrary additive constant in F. Then the ai 
define cyclic fields Zi, (i = 2, • • • , n), containing Zi, where Zi is 
cyclic of degree p{ over F. In fact, if Ci is any non-maximal quan
tity of Zi, there exist solutions di in Zi of 

Ci = dfi — di, d£ = di(xi + h, • - - , Xi + bi), 

(i = 1, • • • , n), 

which are unique up to an additive constant in F. 

For evidently Tz.\F(bi+i) — ( — 1)* = hi7
é0, so that (26)2 are 

satisfied. I t is thus sufficient to prove the existence of the ai 
satisfying (27) and hence sufficient to prove the existence and 
uniqueness of solutions of (29) of which (27) is a special case. 
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We know that Lemma 8 is true for n = 1, 2* by Lemmas 3, 4. 
Hence assume Lemma 8 true in its entirety for Z of degree 
P, P2, ' ' ' y Pl~l- Then, by our assumption (29), there exists a Zi 
of degree p{ over F, the equation (29) has a unique solution 
in Zt-_i, and we wish to prove (29) also has a unique solution in 
Zi and hence the existence of Z;+i . 

Write 

Ci = \tXi* + • • * + Xo, (X/ in Z<-i). 

If X« is a non-maximal quantity of Z t_i, then, by our above 
assumption, X*=/i*5 — /z*, (/** in Z t_i). But then 

(M«*<9S — /*«*<* = »t8(%i + bi)1 — /*«*<* = \tXi' + • * * , 

so that c*— [ ( M ^ < 0 5 " " ( M ^ < 0 ]
 n a s degree at most J — 1. 

If Xf is maximal, then t<p — l and c; has leading term 

X(#i#2 • • • Xi-i)p~1Xit = \biXi*, X T^ 0 in F . 

But then * + 1 ^ 0 , 

X(* + l)"1[(^'+1)s - XS+1] = X(* + l^lixi + 5t-)
f+1 - a**1] 

= \biXi' + • • • , 

so that e*- { [Xft+l)-1***-1]*- [X^+l)-1^'"1"1]} has degree at 
most / in Xi and non-maximal leading coefficient. A repeated 
application of the above process may evidently be made to ob
tain a quantity di in Z t such that C{ — ( 5 / — 5t-) =7*-O,(Y»O in Zt-_i). 
But 7to may be taken non-maximal as above with / = 0, / + 1 = 1, 
and hence 

Yto = 7** — 7»", Ci = ^ — dt-, di = 5t- + 7*'« 

Now let ci = di
s-di = dioS-dio. Then (di0-di)s = dj-df 

= dio — di. The only quantities of Zi unaltered by S are quanti
ties of F. Hence d^ — di = \ in F. We have proved Lemma 8. 
We shall now prove our principal theorem. 

THEOREM. Every cyclic field Z\ of degree p over F of character
istic p is the sub-field of cyclic over fields of degree pn. Write 

(30) Zi = F(xi), %? = xi + ah (at inF). 

* Note that (28) is true for n~2 by Lemma 3, is vacuous for n — \. Hence 
Z2 is defined by Lemma 4. This is the first step in our induction, the case i~2. 

file:///biXi*
file:///biXi'
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Then all such fields Zn are given by 

(31) Zi = F(xi), Xip = Xi + aiy ai in F(xi-i), (i = 2, • • • , n), 

where ai is the unique {up to an arbitrary additive constant in F) 
solution of 

a{(xi + fa, - • • , Xi-i + bi-x) — ai 

= [(*i + 0i) • • • (**-i + a*-i)]p"1 ~ (%i%2 ' * * ^•-i)p"1 , 

bi = (xix2 • • • Xi-i)p-1, (i = 2, • • • , ») . 

Conversely, all fields defined by (30), (31), (32) wi/& #ip = x i + # i 
irreducible in F are cyclic of degree pn with generating automor
phism S given by 

(33) ff0=l, x£ = xt + (xo#i#2 ' ' ' Xi-i)p~l, (i = 1, • • • , n). 

For we have proved that the fields defined above are cyclic, 
in Lemma 8. Assume now, conversely, that Zn is cyclic of 
degree pn over F and that we have proved the above result for 
its subfields Zi, • • • , Zn_i. Let xn

s — xn+dn by Lemma 7 and 
write dn=pbn+gn, where bn = (xix2 • • • #î_i)p~1, j3 is in F, and 
—-gn is a non-maximal polynomial in Z„_i. By Lemma 8, we have 
also 

— gn = hns — An, (An in Zn- i ) . 

We then le t^ n = ^n+An, so that 

yn
S = «nS + hnS = Xn + /3&n + gn + An - gn = ^ + ^ n -

Moreover, Zn = F(xn) = F(yn), since it is evident that yn gener
ates Zn_i(xn) over Zw_i and hence also F(xn), by Lemma 7 (in 
which we proved Zn_i(xn) = F(xn)). 

But now we have shown that we may take dn=f3bn without 
loss of generality. Since 

Tzn-x\F(dn) = pTZn_AF{bn) = ( - ïy-'p = K 

(kn = 1, ' ' ' , P - 1), 

the quantity j8 is a non-zero integer. There exists an integer y 
such that 7/3 = 1 and, if we write zn = yxn, we have zn

s = yxn
s 

= y(xn+f3bn) = zn+bn. Evidently F(xn) = F(zn) while zn satisfies 
(33). By Lemma 7, (27), we have also (32) for i = n; and we 
have proved the theorem. 
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