THE CATEGORY OF THE CLASS LIP (α, p)

BY E. S. QUADE

A function x(s) is said to belong to the class $\text{Lip}(\alpha, p)$ on the interval (a, b) provided

$$||x(s+h) - x(s)|| \equiv \left(\int_a^b |x(s+h) - x(s)|^p ds\right)^{1/p} = O(h^{\alpha}),$$

where $0 < \alpha \le 1$.

There exist continuous functions which belong to no class $\operatorname{Lip}(\alpha, p)$. Indeed if $x(s) \subset \operatorname{Lip}(\alpha, p)$, then the Fourier coefficients of x(s), a_n , b_n , are $O(n^{-\alpha})$. Now a continuous function may be constructed* such that $|a_{n_i}| > 1/\log n_i$ for an infinite set of values $\{n_i\}$. Then for such a function

$$\frac{\left| a_{ni} \right|}{n_i^{-\alpha}} > \frac{n_i^{\alpha}}{\log n_i} \neq O(1),$$

that is, $a_n \neq O(n^{-\alpha})$ and hence the continuous function with the Fourier coefficients a_n belongs to no class Lip (α, p) .

We prove the following theorem.

THEOREM. The subset E of L_p , $p \ge 1$, which is $\sum \operatorname{Lip}(\alpha, p)$ for $0 < \alpha \le 1$, is of the first category in L_p .

We employ a method of proof used by S. Banach.† We take the interval (0, 1) as the fundamental interval and assume the functions to be periodic with the period one. Let E_{nm} be the set of all $x(s) \subset L_p$ such that

$$\int_0^1 |x(s+h) - x(s)|^p ds \le n^p |h|^{p/m}, \qquad (n, m = 1, 2, \cdots).$$

The sets E_{nm} are closed. For, let $x_i(s) \rightarrow x_0(s)$ in L_p . Set

^{*} W. Randels, A remark on Fourier series of continuous functions, American Mathematical Monthly, vol. 40 (1933), pp. 97-99. See also an article by O. Sźász, to appear soon in the same journal.

[†] Über die Baire'sche Kategorie gewisser Funktionenmengen, Studia Mathematica, vol. 3 (1931), pp. 174-179.

$$y_i(s) = x_i(s+h) - x_i(s),$$

 $y_0(s) = x_0(s+h) - x_0(s),$

where h is fixed but arbitrary. Then

$$||y_i - y_0|| \le ||x_i(s+h) - x_0(s+h)|| + ||x_i(s) - x_0(s)||$$

= $2||x_i(s) - x_0(s)|| \to 0.$

But $||y_i-y_0|| \rightarrow 0$ implies that $||y_i|| \rightarrow ||y_0||$, that is,

$$\int_0^1 |x_0(s+h) - x_0(s)|^p ds \le n^p |h|^{p/m}.$$

Moreover $E \subset \sum_{n, m=1}^{\infty} E_{nm}$. For, if $x_0(s) \subset E$, then for some value α_0 , $x_0(s) \subset \text{Lip }(\alpha_0, p)$; that is, there exists a number M such that

$$\int_0^1 |x_0(s+h) - x_0(s)|^p ds \le M |h|^{\alpha_0 p}.$$

To complete the proof we have only to show that every set E_{nm} is non-dense. Suppose, if possible, that E_{NM} were not non-dense. Then, since E_{NM} is closed, it contains a sphere K. Let $\omega(s) \subset K \subset E_{NM}$ be the center of the sphere and r > 0 the radius. Let $g(s) \subset L_p$ be a function of E. Since when $g(s) \subset E$, $c \cdot g(s) \subset E$, where c is a constant not zero, we may assume ||g|| < r. Also

$$||g(t+h) - g(t)|| > 2N |h|^{1/M}$$
.

Set $z(s) = \omega(s) + g(s)$. Then $z(s) \subset L_p$ and

$$||z(t+h) - z(t)|| \ge ||g(t+h) - g(t)|| - ||\omega(t+h) - \omega(t)||$$

$$> 2N |h|^{1/M} - N |h|^{1/M} \ge N |h|^{1/M};$$

that is, z(s) not $\subset E_{NM}$. But $||z-\omega|| = ||g|| < r$; this means $z(s) \subset K \subset E_{NM}$, a contradiction.

In exactly the same manner we may prove the following result.

The subset EC of the space C of continuous functions is of the first category in C.

BROWN UNIVERSITY