
1935J APPROXIMATION BY POLYNOMIALS 111 

D E G R E E OF APPROXIMATION BY POLYNOMIALS 
TO CONTINUOUS FUNCTIONS* 

BY W. E. SEWELL 

1. Introduction.] This paper is primarily concerned with 
functions analytic in a given region and continuous in the cor
responding closed region ; the region is in all cases bounded by 
an analytic Jordan curve with no double points. The existence 
of polynomials which converge uniformly to the function in the 
closed region has been established by Walsh J for more general 
regions, but it is frequently convenient to have more precise 
results in the study of functions on the boundary of the region. 
The method used here is essentially a reduction of the problem 
to the expansion of a function in a Fourier series and conse
quently the function is assumed to satisfy a Lipschitz or Holder 
condition. An extension of the classical theory of Fourier series, 
identification of this expansion with the Taylor expansion on 
the circumference of the unit circle, and a study of the degree of 
approximation of F a b e l s polynomials belonging to the region 
form the basis of this investigation. 

2. Relation between the Fourier and Taylor Expansions. The 
following theorem can be proved easily by separating the func
tion into its real and imaginary parts and examining the coef
ficients. 

THEOREM 1. Let F(x) be analytic in \x\ < 1 , continuous in 
\x\ ^ 1 . Then the Taylor development f or F(x) about x = 0 is pre
cisely the Fourier development for F(x) on the circumference, 
| * | = 1 . 

If F(x), besides being continuous in the closed circle, satisfies 

* Presented to the Society, December 28, 1934. 
f This is a portion of a thesis written at Harvard University under the di

rection of Professor J. L. Walsh, and I am indebted to him for constant aid 
and encouragement. 

t J . L. Walsh, Mathematische Annalen, vol. 96 (1926), pp. 430-436 and 
pp. 437-450. 
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a Holder condition* of order a, (0<a^l), then the results on 
degree of approximation of Fourier series may be applied, where 
F(x) is considered as a complex function of the real variable 0. 
I t is necessary in this connection to show that | F(x{) — F(x2)\ 
<M\xi—X2\a, Xk=:eidk, implies 

| «(0i) ~ u(fi2) | < Mi | 0i - 02 f, | v(fii) - v(62) | < Mi | 0! - 021 ", 

where F(eid) = u(d)+iv(d), and this can be done without dif
ficulty. Also if | F(p)(xi)— F^)(x2)\ <M\xi — x2\

a, where p is a 
positive integer or zero and Fip)(x) is the pth derivative (the zero-th 
derivative is the function itself), then the pth derivatives of u{6) 
and v(6) satisfy the corresponding conditions in 6. 

3. Degree of Convergence of Fourier Series.^ A classical result 
in Fourier series is the following : 

THEOREM 2. If \f(xi)-f(x2)\ SM\ XI — x2\ for all values of x% 
and x2l M being a constant, then \f{x)—Sn(x)\ ^(AM log n)/n, 
where A is an absolute constant and Sn(x) is the sum of the first n 
terms of the Fourier series for f(x). 

This theorem in real variables can be extended % to include 
Holder conditions of order a, (0 <a < 1). Now by an application 
of the results of §2 we get the following theorem. 

THEOREM 3. If F(x) is analytic in \x\ < 1 , continuous in 
\x\ ^ 1 , and on the circumference \ F(xi) — F(x2) \ <M\xi — X 2 | , 
then 

| F(x) - Pn(x) | < ( if i log n)/n, \ x \ ^ 1, 

where Pn(x) is the sum of the first n terms of the Taylor develop
ment of F(x) about # = 0. 

Finally, by further application of the results on Fourier 
series and the relation to the Taylor development, we get the 
following theorem. 

* That is, | F(xi) — F(x2)\ <M\ XI—xzl"; here the Holder condition will be 
used to include the case where a = 1. 

f For the results used here on real variable approximation see Dunham 
Jackson, Theory of Approximation, 1930. 

% See Jackson, loc. cit., pp. 4 ff. The proof goes through with slight modifi
cation for this case. 
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THEOREM 4. If F(x) is analytic in \x\ < 1 , continuous in 
| * | ^l,and\F^\xl)-F^){x2)\ SM\xi-Xî\a, (0<a^l),where 
p is a positive integer or zero, then 

| F(x) - Pn(x) | ^ (M t log n)/n»+«, | * | ^ 1. 

4. Faber1 s Polynomials. Let C be an analytic Jordan curve in 
the x plane and let 

(1) x = yp(t) = 1// + Go + axt + a2t
2 + • • • = 1/t + $(/) 

map the exterior of C on the region \t\ <roî the complex / plane, 
carrying # = <x> into / = 0. Due to the analyticity of C, the right-
hand side of (1) converges for | /1 ^ r', r'>r, and yields a uniquely 
inversible map. Denote | /1 =p<r' by Kp and let its image in the 
x plane be Cp ; then Cr = C. Faber's polynomials* for the given 
region are defined as follows: Pn(x) is the polynomial in x of 
degree w such that the coefficient of xn is unity, and, as a func
tion of t through (1), it has zero coefficients for the terms in 
r * + \ r w + 2 , • • • , r \ f ; hence Pn(x) = l / / n + / $ w ( 0 , where $»(/) 
converges for | /] ^ r'. Faber has proved that any function ana-
lytic interior to C can be developed in a series, X ^ o 0 ^ Pp(x) » which 
converges to the function at every interior point, and, conversely, 
every series which converges in the interior of C represents an ana-
lytic function. 

5. Convergence to F{x) in the Closed Region. Now let F(x) be 
an arbitrary function analytic in the region bounded by Cp, an 
arbitrary analytic Jordan curve, let the function be continuous 
in the corresponding closed region, and let F(x) satisfy a Lip-
schitz condition (Holder condition of order one) on Cp. Under 
these conditions the convergence of Faber's polynomials to 
F(x) in the closed region will be established. 

By Faber's results F(x) =Y^^avPv{x), x within Cp. Since the 
curves are analytic, X = \f/(r), where X is on Cp and r is on Kp, 
is analytic and, consequently, | F(Xi) — F(X2) | ^ A | Xi — X21 
implies 

I FGKTO) - F(iKr,)) \$A\ *(n) - *(r2) |, 

where XI = \//(TI), X 2 = ^ ( T 2 ) . But since \p(t) is analytic on Kp, 
| ^ ( T I ) — ̂ ( r 2 ) | SB\T\ — T2 | , and hence 

* G. Faber, Mathematische Annalen, vol. 57, pp. 389-408; Journal für 
Mathematik, 1920. 
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I FWin)) - Ftyfa)) | ^ AB | n - r21 = C | n - r 2 1 . 

Thus F(\(/(t)) satisfies a Lipschitz condition on K„. From above, 

W ) ) = £ «.(ï/r + <?,(<)), (P < I <1 < O, 
0 

where \t%(t)\ <G/r'\ G fixed; av= [l/{2Tri)}JKpF{yp{r))rv-ldr. 
We may write F(yp(t)) in the form 

(2) Fm)) = z */** + z w, (P < i /1 < ro. 
0 1 

Since the right-hand side is analytic in p<|tf | <f', E i ^ " *s 

analytic in | / | < r ' . Now define <l>(t) =-^b^+FWit)). This 
function is analytic in p < | * | < r ' , F(\p(t)) satisfies a Lipschitz 
condition on | / | =p and — ] C i ^ " is analytic in \t\ <r'> and 
hence <t>(t) satisfies a Lipschitz condition on | / | —p. From (2), 
<K0 =]Co ^A"» (p < 11\ <r')> and under the transformation 
t =p/y* <t>(p/y) —^iy), *(y) is represented by its Taylor develop
ment* in the ring p/r'< \y\ < 1 . The function $(y) may be de
fined throughout the unit circle by this convergent power series, 
and since $(y) is analytic throughout the unit circle, and satis
fies a Lipschitz condition on the circumference, by Theorem 3 
the Taylor development converges to $(y) on \y\ = 1 . This 
means that 

00 oo 

- E bvt" + Fty(f)) = £ «r/P, (P ^ I * I < r') ; 
1 0 

and hence 
00 00 

HUD) = £ */r + £ w, (p ̂  I * I < o , 
0 1 

which means convergence in the closed region. 
By Theorem 3 we have | $(y) — E O ^ V P " ! <(Af log w)/w on 

and interior to | y | = 1 . But y=p/t and $(y) =<t>(p/y) =<t>(t) 
= F(\l/(t))-J^bvt

v, whence 

1 0 

< (Af log »)/f», ( | * | = P ) , 

* The original expression for ap under the transformation above serves to 
show that av/p

p is the ?th Taylor coefficient of $(y). 
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which means that 
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But 
n+1 
Z o,/e \< (M log »)/», ( | / | - p ) . 

oo oo n oo 

1 1 1 n + 1 

and hence 

W ) ) - £ W - Z Â" = W ) ) - Z «^(fl - Z <h/r 
1 0 1 0 

= W ) ) - Z +ty,(t) - Z a,/*- - Z <MÇ,(O 
1 0 n+1 

n+1 

ou i I oo 

n+1 n+1 

Thus 

W ) ) - Z ^(l//" + *$,(*)) 
o 

(3) °° 

^ (ifiogfi)/n + E k l l ^ W | . 
n+1 

But |/$,(*) | <G/r , F
f G fixed, p < r ' , |*| <r /

f and 
. . i i r l 

a J = I F(yp{T))rv-ldr ^ IwpMp^1/(2T) = ilfp\ 
I 2TriJKp I 

Since ^(x) satisfies a Lipschitz condition on Cp, it is bounded 
there and thus F(yf/(t)) is bounded on Kp. Hence 

(4) 

Z \<hI I '&(') I ̂  Z W?A" = Z MGip/r'Y 
n+1 n+1 n+1 

= M ? Z (p/O'. 
n+1 

But the remainder of a geometric series with quotient less than 
unity is of order less than (log n)/n* In consideration of this fact, 
an application of (4) to (3) yields 

* This follows directly from the fact that nxn+l îov\x\ <1 is the nth. term 
of a convergent series. We shall use the fact that this geometric remainder is 
less than (log n)/na, ( 0 < a < l ) , in a later proof. 
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^ (4 ' l og» ) /» , (*onj£p). 

The constant A' can be adjusted so that this inequality holds 
for all ». Since x = \l/(t) and Pv(x) = l/tv+t^v(t)t (4) becomes 

F(x) - X) ^ ( * ) 

The result can be stated as follows. 

{A' log » ) /» . 

THEOREM 5. If F(x) is analytic interior to the analytic Jordan 
curve Cp, continuous in the closed region, and satisfies a Lipschitz 
condition on Cp, then 

F(x) - X avPv(x) ^ (A' log » ) /» , 

x on or within Cp, where A1 is a constant independent of x and n 
{A' depends on F{x) and on Cp) and Pv(x) is the Faber polynomial 
of degree v belonging to the region, 

6. Extension to Holder Conditions and Derivatives. Suppose 
F(x) satisfies on Cp a Holder condition of order a, ( 0 < a ^ l ) , 
with the remaining hypotheses unchanged. By examination of 
the above it is seen tha t the first modification will come in (2) 
and by Theorem 4 the inequality will be 

o 
< (M log n)/n«. 

The geometric remainder can be handled as before,* and we get 
the following theorem. 

THEOREM 6. If F(x) is analytic interior to Cp, continuous in the 
corresponding closed region, and if 

\F(X1) -F(X2)\ S M\X1-X2\°, 

Xh X2 on Cp, then 

(0 <a ^ 1), 

F(x) - X avPv(x) ^ (A' log »)/»", x on or within Cp 

* See preceding footnote. 
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Now suppose, we have, instead of a Lipschitz condition on the 
function, | F^(Xi) -F^(X2)\ ^M\X1-X2\

a, ( 0 < a ^ l ) , pa 
positive integer. Let F(x) = F(\f/(t)) =ƒ(/) and t = (j>(x). Then 
dt = <t>,{x)dx1 dt/dx=<f>'(x). Since F{x) has a pt\i derivative on 
CP1 fit) has a pth derivative on Kp. We have 

dF df dt 

dx dt dx 

F"(x) = 4- T- = T- t/W(*)] - / (<)*"(*) + *WW(«) 

*"'(*) = *" W W + *"(*)* W' (0 
+ 2[*'(*)][*"(*)]ƒ"(*) + [* '(*)]V"(0, etc. 

Now, since <£(#) is analytic, all its derivatives satisfy Lipschitz 
conditions on Cp and hence with respect to t on Kp, and since 
ƒ(/) has a £th derivative on Kp its derivatives of all orders less 
than p satisfy Lipschitz conditions there, and hence it is seen 
that fip)(t) satisfies the corresponding Holder condition on Kp. 
The geometric remainder can be treated just as above, and thus 
we have the following theorem. 

THEOREM 7. Let F(x) be analytic in the region bounded by the 
analytic Jordan curve Cp> continuous in the corresponding closed 
region, and further let 

\FM(Xi) -F^(X2)\ ^ M\ Xt- X2\", (0 <a ^ 1), 

Xi, X2on Cp, p a positive integer or zero; then 

F(x) - J2 avPv(x) {Mi log n)/np+a, x on or within Cp. 

This theorem includes all the preceding results as special cases. 
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