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H I L B E R T - B E R N A Y S ON PROOF-THEORY 

Grundlagen der Mathematik, Volume I. By D. Hubert and P. Bernays. (Grund-
lehren der Mathematischen Wissenschaften, Volume XL.) Berlin, Springer, 
1934. x i i+471 pp. 

This is undoubtedly the most important book on the foundations of mathe
matics since Whitehead and Russell's Principia Mathematica, for it offers an 
authoritative formulation of the famous Hubert Proof-theory. All the recent 
work in the foundations has been dominated by the discovery of contradictions 
in the body of mathematics, especially in Cantor 's Mengenlehre. There have 
been many a t tempts to avoid this difficulty by using axiom systems so limited 
tha t the known contradictions could not arise. Hubert , however, planned a 
direct a t tack on the difficulty: an a t tempt to prove that , in a suitably limited 
system, no new contradiction could ever arise. Bernays here discusses the cases 
in which Hubert 's plan has succeeded. In brief, the Hubert school has de
veloped a powerful and fascinating method for investigating mathematical 
proofs and has shown by these methods that a large part of elementary num
ber theory is consistent (free from contradiction). However, the extension to 
more complicated branches of mathematics has met with serious obstacles. 

How is it possible to show tha t a mathematical system is consistent? Only 
by means of a thoroughgoing formalization of the axioms and proofs of that 
system. In other words, the logical methods usually used uncritically in carry
ing out a mathematical proof must themselves be subjected to mathematical 
formulation. This is possible by means of the calculus of propositions, which 
was developed by Peano and by Russell and Whitehead. In this calculus, all 
the axioms of logic and mathematics can be precisely and symbolically ex
pressed. Furthermore, the operations of logic are all reduced to a few simple, 
mechanical rules of procedure. A proof must thus start with one or more known 
axioms, and must proceed step by step, each step following some one of the 
mechanical rules. Any formal proof is thus finite and combinatorial in charac
ter, and hence the possibility tha t some proof might lead to a contradiction 
can be investigated by combinatorial methods. This is Hubert 's plan of at tack. 

But this finite analysis of formal proofs must itself be mathematical and so 
must itself involve proofs. These latter proofs belong to metamathematics— 
they are not the mathematics to be investigated ; they are rather the tools of 
the investigation. For example, any general study of proofs will need some sort 
of complete induction on the number of steps in a proof. This process of in
duction, together with the other tools needed in the investigation, is essentially 
finite in character. Bernays has explained excellently exactly wherein this 
finiteness consists. Roughly speaking, finite arguments about numbers are 
those which can be grasped perceptually (that is, which are anschaulich iiber-
blickbar). In particular, the existence of a number with some property has a 
finite meaning only when there is a definite method whereby some such number 
can be constructed. In this respect, finite theorems are subject to the intui-
tionistic logic of Brouwer. This means that the tools of proof-theory are to be 
finite methods which are themselves clearly consistent. 
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Symbolic logic, the next prerequisite for proof-theory, is developed in 
§§3—5 in a masterly fashion. In the calculus of propositions the usual operators 
—"and," "or," "implies," "not," and "equivalent"—are introduced, both by 
means of axioms and by the superior method of truth-value tables. (For ex
ample, "not" is the operator which produces a false proposition from a true 
one.) For the calculus of propositional functions the author uses a symmetric 
system of axioms and rules concerning the two operators "for all xn and "there 
exists an x". The rules of procedure in this system include the usual rule of in
ference, which allows us to assert the conclusion of a true theorem UA implies 
B" once the hypothesis A has been established, and the rule of substitution, 
according to which variables may be replaced by constants or combinations of 
variables. An additional rule allows us to rename the apparent variable x in 
"for all x" or "there exists an x" A final section discusses a method of adjoining 
to this calculus the relation of equality. 

The sixth section of the book introduces the first typical application of 
proof-theory to an infinite system: the demonstration that a certain axiom 
system for whole numbers is consistent. This system consists of the calculus of 
propositional functions, including equality, and the Peano axioms for whole 
numbers, excluding the principle of mathematical induction. The Peano axioms 
are slightly modified, in that the function a'—a-\-\ is used instead of the rela
tion ub is the successor of a". If this system of axioms were inconsistent, then 
there would be a proof starting from these axioms and leading to a contra
diction of the form 0^0 . In the simplest case, this proof would involve no ap
parent variables. In such a proof, all free variables can be eliminated, for any 
application of the rule of substitution can be moved back in the proof until the 
substitution in question takes place right in the original axioms. All the formu
las of the proof are then simple numerical formulas—equalities and inequalities 
between concrete numbers, together with combinations of such by the opera
tions of the propositional calculus. Any such numerical formula is either "true" 
or "false" in a finite, constructive sense. Furthermore, the particular axioms 
from which the proof starts are all "true" in this sense, while all the rules of 
procedure give true results when applied to true premises. In particular, if 
two formulas "5" and "5 implies Tn are true, then the conclusion T of the 
inference is likewise true. Hence all the formulas derived in the course of the 
proof are true, so that a contradiction 0 5*0 at the end of the proof cannot occur. 

This result must next be extended to proofs which do involve apparent 
variables. This is possible with the methods of Herbrand and Presburger. 
The formulas of such a proof are not all numerical formulas, but it is possible 
to associate with any one of the formulas several corresponding reduced nu
merical formulas. For example, (Ex) (a<x& x<b) would have the reduced 
form 0 <b & (a-\-l) <b. Here, as in the other cases, the reduced formula is ef
fectively equivalent to the original. Hence any formula is called verifiable if one 
of its reduced forms is true. As before, all the formulas of a proof are verifiable, 
so that no contradiction can arise. 

Much of the rest of the book is concerned with extensions of this method of 
establishing consistency by means of "verifiable" formulas and methods of 
"reduction." In particular, these ideas are still applicable if the axiom of 
mathematical induction is added to the other Peano axioms. In other words, 
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the combination of the Peano axioms for whole numbers, the axioms for 
equality, and the calculus of propositional functions gives a consistent system. 

This, however, does not prove that all ordinary number theory is consistent, 
for the usual development of whole numbers uses not only these axioms, but 
also certain recursive definitions for functions such as a+6. Such recursive 
definitions, unlike the ordinary explicit definitions, can a t times lead to contra
dictions in systems which would otherwise be consistent. Hence the next task 
is an investigation of the consistency of recursive definitions. The author here 
considers any system of verifiable axioms for number theory, together with 
mathematical induction, the axioms for equality, and the calculus of propo
sitions for free variables only. The addition of recursive definitions to such a 
system will not give rise to any contradiction, as is shown by a modification of 
the previous methods. The exclusion of apparent variables is essential to this 
result, but even with this limitation much can be developed. This the author 
shows by developing the usual theorems for prime decomposition by means of 
such recursions. 

The last major topic is the analysis of descriptive functions, of the type "the 
so-and-so" or "the smallest number with such and such a property". This 
study was begun by Whitehead and Russell. A considerable extension of their 
method enables Huber t and Bernays to show that such descriptive functions 
can always be eliminated: a theorem which does not involve descriptive func
tions, but which has been proved by the use of descriptive functions, can also 
be proved without descriptive functions. This result has many applications, in 
particular to a study of recursive definitions. 

This book also contains a wealth of other significant results: a system of 
positive logic (§3); the deduction theorem (§4); the contributions of Skolem, 
Löwenheim, Behmann, and others to the Entscheidungsproblem (§§4-5); the 
proofs of several additional rules of procedure (§4); the Ackermann-Péter 
"folded" recursions which cannot be reduced to primitive recursions (§7); a 
discussion of normal forms in the propositional calculus with equality (§5); a 
critique of axioms for equality (§7); and several interesting axiom-systems for 
parts of number-theory. Indeed, if this book has a fault, it is only in tha t Pro
fessor Bernays' encyclopedic knowledge has led him to include so much that 
the main theme becomes at times obscured. Nevertheless, the book is very care
fully and clearly written. Many of the arguments are of necessity formal in 
character, but if a t such points the reader will bear in mind the non-formal 
interpretation of the discussion, he will have little trouble. The author has 
succeeded unusually well in explaining an abstract subject without assuming 
any previous special knowledge on the part of the reader. 

The chief open question is that of extending the results. This volume has 
established the consistency of a system of recursive number theory; but for 
more extensive systems, the chief result is the preliminary step of eliminating 
the descriptive functions. To include all of number theory in a consistency 
proof, fundamental changes in the method are necessary, as the authors recog
nize. In spite of the optimism which Hubert expresses in his preface, the well 
known results of Gödel point to almost insurmountable difficulties in the pro
gram of proof-theory. The second volume of this work, with its discussion of 
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these questions, will be awaited with great interest. I t may be tha t still other 
points of view will be necessary to complete the foundations of mathematics so 
well begun by the Hubert proof-theory. 

SAUNDERS M A C L A N E 

SZEGÖ ON JACOBI POLYNOMIALS 

Asymptotische Entwicklungen der Jacobischen Polynôme. By Gabriel Szegö. 
Schriften der Königsberger Gelehrten Gesellschaft. Jahr 10, Naturwissen-
schaftliche Klasse, Heft 3, 1933, pp. 35-111 (1-77). 

One of the interesting features in the development of analysis in the twen
tieth century is the remarkable growth, in various directions, of the theory of 
orthogonal functions. Two brilliant achievements on the threshold of this 
century—Fejér's paper on Fourier series and Fredholm's papers on integral 
equations—have been acting as a powerful inspiring source of attraction, in
viting analysts to delve deeper into the theory of orthogonal functions and 
their applications. First come, due to their simplicity, the trigonometric 
functions {sin mx, cos mx} which serve as a yardstick for orthogonal functions 
in general. Next we may consider orthogonal polynomials, of which Jacobi 
polynomials are a special case. 

Let us recall the general definition of orthogonal polynomials. A weight-
function p(x), non-negative in a given interval (a, b), finite or infinite, and such 
that all "moments" fap(x)xrdx = ar exist, (r—0, 1, 2, • • • ), with «o>0 , gives 
rise to a unique system of orthogonal and normal polynomials <j>n(x) = anx

n 

+ • • • , (rc=0, 1, • • • ; an>0), so tha t 

m J p(x)<f>m(x)<f>n(x)dx = 0, (m 7* n), 

=s 1, (m = n), (m} n =» 0, 1, • • • ) . 

On the basis of (1), we obtain the following expansion of an "arbitrary" 
function: 

(2) *(x) ~ J^fn<t>n(x), With fn = I p(x)f(x)<j>n(x)dx, 
n=0 J a 

and this constitutes the most interesting and important application of the 
polynomials <f>n(x) in analysis, as well as in mathematical physics, mathematical 
statistics, etc. 

The oldest and best known are Legendre polynomials, derived from (1) 
with (a, b) finite, say ( — 1, 1), and p(x) = l. Their direct generalization are 
Jacobi polynomials Pn

(tt»*>(*): (fl,b) = ( - 1 , 1 ) , p(x) = (1 -x)a(l+x)P, a,(3> - 1 . 
In case of an infinite interval, the most important are the polynomials of 
Laguerre: (a, &) = (0, «>), p(x)=xae~x, a> — 1, and those of Hermite: (a, b) 
= ( — oo, oo ), p(x) = e~x2. These four kinds of orthogonal polynomials constitute 
what may be considered as one single family of "classical" polynomials, where 
Jacobi polynomials, from many points of view, represent the most typical 
member. In fact, by assigning to a, j3 certain finite or limiting values, we get 
Legendre polynomials (a = /3=0), trigonometric polynomials (a = /3= —1/2), 


