SOME THEOREMS ON DOUBLE LIMITS*

BY J. D. HILL[†]

1. Introduction. Let f(x, y) be an arbitrary single-valued real function of the real variables x, y defined in the neighborhood of a point Q(a, b), which for simplicity may be taken as (0, 0). The following sufficient (and obviously necessary) condition for the existence of the double limit

(1) $\lim_{\substack{x \to 0 \\ y \to 0}} f(x, y)$

has been established.

THEOREM 1 (Clarkson).[‡] If f(x, y) has a unique limit as P(x, y) approaches Q on every curve having a tangent at Q, the double limit (1) exists.

The present note is concerned with similar theorems, and for definiteness we state at the outset that the assertion, "f(P) has a limit λ as $P \rightarrow Q$ on a point set§ E having Q as a limit point (or $\lim_{P \rightarrow Q} f(P) = \lambda$, on E)" shall mean that for each $\epsilon > 0$ there exists a positive $\delta(\epsilon, E)$ such that $|f(P) - \lambda| < \epsilon$ for all points P of E satisfying the condition $0 < |x| + |y| < \delta$.

Theorem 1 naturally suggests a question which is answered by Lemma 1, for convenience in the statement of which we introduce the following definition.

DEFINITION OF PROPERTY L. A class $\{E\}$ of sets E, each having Q as a limit point, will be said to have Property L if and only if any set S whatsoever of points having Q as a limit

^{*} Presented to the Society, April 19, 1935.

[†] I gratefully acknowledge my indebtedness to Mr. Hugh J. Hamilton for suggesting Lemma 1, and to Mr. Nelson Dunford for Theorem 5.

[‡] Clarkson, A sufficient condition for the existence of a double limit, this Bulletin, vol. 38 (1932), pp. 391-392. A theorem essentially the same has been proved by Verčenko and Kolmogoroff, Über Unstetigkeitspunkte von Funktionen zweier Veränderlichen, Comptes Rendus, Académie des Sciences, URSS, new series, vol. 1 (1934), pp. 105-107.

[§] In particular, on a curve.

point has a subset S^* which is contained in some one of the sets E and has Q as a limit point.

LEMMA 1. A necessary and sufficient condition that the relation $\lim_{P\to Q} f(P) = \lambda$ on every set E of a class $\{E\}$ shall imply the existence of (1) is that $\{E\}$ have Property L.

This lemma, whose proof we leave to the reader, provides a criterion for determining whether or not an analog of Theorem 1 holds for other classes of curves or point sets.

2. The Class of Curves $\{\mathfrak{A}\}$. Let $\phi(s) \equiv \sum_{n=1}^{\infty} a_n s^n$, $\psi(s) \equiv \sum_{n=1}^{\infty} b_n s^n$ be any two real power series with positive radii of convergence (say) ρ_a , ρ_b , respectively, and let ρ be chosen so that $0 < \rho < \min(\rho_a, \rho_b)$. Then the equations

(2)
$$x = \phi(s), \qquad y = \psi(s), \qquad (|s| \leq \rho),$$

define a curve \mathfrak{A} through Q. We denote by $\{\mathfrak{A}\}$ the class of all such curves.

THEOREM 2. The existence of a unique limit for f(P) as $P \rightarrow Q$ on every curve of $\{\mathfrak{A}\}$ does not imply the existence of (1).

PROOF. Let us assume the contrary, which implies that $\{\mathfrak{A}\}$ has Property *L*. We choose *S* as the set of points on the curve $y = e^{-1/x^2}$ for x > 0, and proceed to show that the definition of Property *L* is not satisfied. Suppose that there exists a curve \mathfrak{A}^* of $\{\mathfrak{A}\}$ and an infinite subset S^* of *S* of points $(\xi_n, \eta_n) \rightarrow (0, 0)$, such that S^* lies on \mathfrak{A}^* . Then if (2) is the representation of \mathfrak{A}^* , there must exist at least one value of *s*, say σ_n , for which $\phi(\sigma_n) = \xi_n$, $\psi(\sigma_n) = \eta_n$, $(n = 1, 2, 3, \cdots)$. Let λ be any limit point of the sequence $\{\sigma_n\}$, and let $\{s_n\}$ be a subsequence of $\{\sigma_n\}$ such that $s_n \rightarrow \lambda$ as $n \rightarrow \infty$. If $\{(x_n, y_n)\}$ is the corresponding subset of $\{(\xi_n, \eta_n)\}$, we have $0 < x_n = \phi(s_n) \rightarrow 0$, and $0 < y_n = \psi(s_n) \rightarrow 0$, whence by continuity $\phi(\lambda) = \psi(\lambda) = 0$. Consequently, in view of the relation $|\lambda| \leq \rho < \min(\rho_a, \rho_b), \phi(s)$ and $\psi(s)$ have expansions of the form

(3)

$$\phi(s) = \sum_{n=\mu}^{\infty} \alpha_n (s-\lambda)^n, \qquad (\mu \ge 1, \, \alpha_\mu \ne 0),$$

$$\psi(s) = \sum_{n=\nu}^{\infty} \beta_n (s-\lambda)^n, \qquad (\nu \ge 1, \, \beta_\nu \ne 0),$$

522

DOUBLE LIMITS

for $|s-\lambda|$ sufficiently small. Choose an integer *m* to satisfy the inequality $m\mu > \nu$, and consider the equation

$$\frac{\psi(s_n)}{[\phi(s_n)]^m} = \frac{e^{-1/x_n^2}}{x_n^m}, \qquad (n = 1, 2, 3, \cdots),$$

which is implied by $S^* \subset \mathfrak{A}^*$. Using (3) one sees that the left side increases without limit as $n \to \infty$, while the right side tends to zero. This contradiction completes the proof.

3. The Class of Curves $\{\mathfrak{B}_r\}$. Let r be a preassigned real number, or ∞ , and denote by $\{\Gamma_r\}$ the class of all single-valued functions of z(=s+it), each of which (i) is analytic in the extended plane except for a singularity at z=r, (ii) vanishes at z=0, and (iii) is real on the real axis. Then about z=0 each function in $\{\Gamma_r\}$ admits a power series expansion with real coefficients whose radius of convergence is |r|. Let $\{\Pi_r\}$ be the class of all such power series, and let $\{\mathfrak{B}_r\}$ be the class of all curves \mathfrak{B}_r through Q each of which is defined parametrically by

(4)
$$x = \phi(s) \equiv \sum_{n=1}^{\infty} a_n s^n, \qquad y = \psi(s) \equiv \sum_{n=1}^{\infty} b_n s^n,$$

where the power series belong to the class $\{\Pi_r\}$.

THEOREM 3. For each fixed r, $(0 < |r| \leq \infty)$, the existence of a unique limit for f(P) as $P \rightarrow Q$ on every curve of $\{\mathfrak{B}_r\}$ implies the existence of (1).

This theorem is an immediate consequence of Lemma 1 and the following two lemmas, the first of which may be regarded as evident.

LEMMA 2. Corresponding to each enumerable set E there exists a set G of points (x_n, y_n) with $E \subset G$ and $|x_n|, |y_n| < n$, $(n = 1, 2, 3, \cdots)$.

LEMMA 3. Corresponding to each enumerable set E there exists a curve \mathfrak{B}_r of the class $\{\mathfrak{B}_r\}$ which passes through every point of E.[‡]

PROOF. Setting

1935.]

[†] It is worthy of note that, by Theorem 2, the existence of a unique limit for $f[\phi(s), \psi(s)]$ as s, $(|s| \leq r' < r)$, tends to zero for every curve of $\{\mathfrak{B}_r\}$ does not imply the existence of (1).

[‡] It may well be that this lemma or something like it is known, but we have been unable to locate it in the literature.

$$g_m(w) \equiv 2(-1)^{m+1} \prod_{m \neq \nu=1}^{\infty} \left(1 - \frac{w^2}{\nu^2} \right) \equiv (-1)^{m+1} \frac{2m^2 \sin \pi w}{\pi w (m^2 - w^2)},$$

we have for $m = 1, 2, 3, \cdots$,

(5)

$$|g_m(w)| \leq 2e^{k|w|^2}, \text{ where } k = \sum_{\nu=1}^{\infty} 1/\nu^2, \\ g_m(\pm m) = 1, \quad g_m(\pm n) = 0, \quad (m \neq n = 1, 2, 3, \cdots).$$

We first assume r finite; let $\rho = |r|$ and μ be the greatest integer $\leq 1/\rho$. Then there exists a σ satisfying the relation

(6)
$$\rho m - 1 > \sigma > 0$$
, $(m = \mu + 1, \mu + 2, \cdots)$.

We define expressions c_n by the formula

(7)
$$c_m = 1/[m^4(\rho m - 1)], \qquad (m = \mu + 1, \mu + 2, \cdots).$$

By Lemma 2 there exists a set G of points (ξ_n, η_n) with $G \supset E$ and $|\xi_n|$, $|\eta_n| < n$, $(n = 1, 2, 3, \cdots)$. Letting $m = \mu + n$, $x_m = \xi_n$, $y_m = \eta_n$, $(n = 1, 2, 3, \cdots)$, we have

(8)
$$|x_m|, |y_m| < m - \mu \leq m, \quad (m = \mu + 1, \mu + 2, \cdots).$$

From (5), (6), (7), (8), we obtain

$$\left| c_m x_m g_m(w) \right|, \quad \left| c_m y_m g_m(w) \right| \leq 2e^{k |w|^2} / \sigma m^3,$$

which shows that each of the infinite series

(9)
$$F_1(w) \equiv \sum_{m=\mu+1}^{\infty} c_m x_m g_m(w), \qquad F_2(w) \equiv \sum_{m=\mu+1}^{\infty} c_m y_m g_m(w)$$

converges uniformly in any finite region, and accordingly represents an entire function since $g_m(w)$ is entire. Moreover, since *G* may be assumed to include a point not on either axis, it is evident from the definitions of c_m and $g_m(w)$ that neither $F_1(w)$ nor $F_2(w)$ is a constant. Consequently

(10)
$$F_3(w) \equiv -w^4(rw+1)F_1(w), F_4(w) \equiv -w^4(rw+1)F_2(w)$$

are entire functions with singularities at $w = \infty$. By means of the transformation

(11)
$$w = 1/(z - r),$$

524

[August,

DOUBLE LIMITS

 $F_{3}(w)$, $F_{4}(w)$ are transformed respectively into functions $\phi(z)$, $\psi(z)$ which belong to $\{\Gamma_{r}\}$ and thus determine a curve \mathfrak{V}_{r}^{*} of the form (4). Finally [using (11), (10), (9), (7), and (5)] we obtain for $n = \mu + 1, \mu + 2, \cdots$

$$\phi(r-1/n) = x_n, \ \psi(r-1/n) = y_n, \ \text{if} \ r > 0, \\ \phi(r+1/n) = x_n, \ \psi(r+1/n) = y_n, \ \text{if} \ r < 0,$$

which proves that the curve \mathfrak{B}_r^* passes through each point of G; E being a subset of G, the lemma is established for the case of r finite.

For $r = \infty$, the functions

$$\phi(z) \equiv z^4 \sum_{m=\mu+1}^{\infty} x_m g_m(z)/m^4, \qquad \psi(z) \equiv z^4 \sum_{m=\mu+1}^{\infty} y_m g_m(z)/m^4$$

which belong to $\{\Gamma_{\infty}\}$, lead to the same conclusion if z is assigned the values $n = \mu + 1, \ \mu + 2, \cdots$.

In passing it seems of interest to mention the following corollary.

COROLLARY. There exists a curve \mathfrak{B}_r of the class $\{\mathfrak{B}_r\}$ which passes through every point in the plane with rational coordinates.

From Lemma 3 it is clear that the class $\{\mathfrak{B}_r\}$ has Property L; Theorem 2 then follows by Lemma 1.

4. The Class of Curves $\{\mathfrak{C}\}$. Let $F(x, y) \neq 0$ be a real, singlevalued function of the real variables x, y which is analytic in some neighborhood of Q and for which F(0, 0) = 0. Then F(x, y) = 0 defines a curve \mathfrak{C} through Q. Excluding those curves for which Q is an isolated point, we denote by $\{\mathfrak{C}\}$ the class of all curves \mathfrak{C} which remain. By employing a well known theorem of Weierstrass, \dagger together with an analog of the Puiseux method for algebraic curves, one may readily verify that for each curve \mathfrak{C} of $\{\mathfrak{C}\}$ there exists a neighborhood of Q in which all points of \mathfrak{C} lie on a *finite* number of curves of class $\{\mathfrak{A}\}$. Combining this fact with the proof of Theorem 2 we obtain the following theorem.

THEOREM 4. The existence of a unique limit for f(P) as $P \rightarrow Q$ on every curve of $\{\mathfrak{C}\}$ does not imply the existence of (1).

1935.]

[†] Goursat-Hedrick-Dunkel, Functions of a Complex Variable, pp. 233 ff.

5. The Class of Curves $\{\mathfrak{D}\}$. Let $\{\mathfrak{D}\}$ denote the class of all curves \mathfrak{D} representable parametrically as

$$x = x(s),$$
 $y = y(s),$ $(0 \le s \le 1),$

where x(s) and y(s) have derivatives of all orders and x(0) = y(0) = 0.

THEOREM 5. If f[x(s), y(s)] has a unique limit as s tends to zero for every curve of $\{\mathfrak{D}\}$, the double limit (1) exists.

PROOF. Let S be any set of points having the point Q as a limit point, and let S* be a subset of points (x_n, y_n) tending to Q such that we have $|x_n|, |y_n| < e^{-1/n^2}, (n=1, 2, 3, \cdots)$. If we set $I_1 \equiv (1/2 \le s \le 1)$, and $I_n \equiv [1/(n+1) \le s \le (2n+1)/(2n(n+1))]$, $(n=2, 3, 4, \cdots)$, then the equations $x(0) = 0, x(s) = x_{n+1}$ for s in I_n , define a function with a closed domain which can be extended \dagger to the whole interval $(0 \le s \le 1)$ in such a way that the extended function x(s) has derivatives of all orders. The function y(s) is defined similarly. The corresponding curve \mathfrak{D} is such that the point [x(s), y(s)] approaches Q through the set S^* as s tends to zero. This proves that $\{\mathfrak{D}\}$ has Property L, and establishes the theorem.

6. The Class of Curves $\{\mathfrak{C}\}$. Let $\{\mathfrak{C}\}$ be the class of all curves \mathfrak{C} through Q, each of which has, with respect to a properly chosen system of rectangular coordinates ξ , η with origin at Q, an equation of the form $\eta = \phi(\xi)$, where $\phi(\xi)$ is a single-valued function with a continuous, non-negative, monotonic increasing first derivative in a certain neighborhood of $\xi = 0$ and $\phi'(0) = 0$. For a fixed system ξ , η denote by $x(\xi, \eta)$, $y(\xi, \eta)$ the coordinates of the point (ξ, η) in the original system x, y. Concerning the class of curves $\{\mathfrak{C}\}$ we have the following theorem which is an improvement over Theorem 1 to the extent that $\{\mathfrak{C}\}$ is a proper subclass of the class considered by Clarkson.

THEOREM 6. If $f[x(\xi, \phi(\xi)), y(\xi, \phi(\xi))]$ has a unique limit as ξ tends to zero for every curve of $\{\mathfrak{G}\}$, the double limit (1) exists.

PROOF. S being any set of points having Q as a limit point one readily sees by Clarkson's reasoning that axes ξ , η can be

[†] Whitney, Analytic extensions of differentiable functions defined in closed sets, Transactions of this Society, vol. 36 (1934), pp. 63-89, Theorem 1.

DOUBLE LIMITS

so chosen that every closed sector lying in the first quadrant and having the ξ axis as one boundary will contain a subset of Shaving Q as a limit point. If S has a subset on the ξ axis with Qas a limit point, the curve $\eta = \phi(\xi) \equiv 0$ of class $\{\mathfrak{E}\}$ passes through a subset of S with the limit point Q, and the definition of Property L is satisfied. In the alternative case, we can, by the choice of axes, select a subset S^* of S of points (ξ_n, η_n) tending to Q, such that we have

$$0 < \xi_{n+1} < \xi_n/2,$$
 $0 < \eta_{n+1} < \eta_n/2,$
 $\eta_n/\xi_n \to 0 \text{ as } n \to \infty,$ $0 < 2\eta_{n+1}/\xi_{n+1} < \eta_n/(2\xi_n).$

From these relations it follows that

$$\frac{2\eta_{n+1}}{\xi_{n+1}} < \frac{\eta_n}{2\xi_n} < \frac{\eta_n - \eta_{n+1}}{\xi_n} < \frac{\eta_n - \eta_{n+1}}{\xi_n - \xi_{n+1}} < \frac{\eta_n}{\xi_n - \xi_{n+1}} < \frac{2\eta_n}{\xi_n} ;$$

hence $\sigma_n \equiv (\eta_n - \eta_{n+1})/(\xi_n - \xi_{n+1})$ tends monotonically to zero in the strict sense as $n \to \infty$. Consider the sequence of functions $\phi_n(\xi)$ defined as follows. Let $\phi_n(\xi) = \eta_{n+1} + \sigma_n(\xi - \xi_{n+1})$ on the interval $I_n \equiv (\xi_{n+1} \le \xi \le \xi_n)$ for *n* odd. For *n* even, let $\phi_n(\xi)$ be any function on I_n such that $\phi_n(\xi_{n+1}) = \eta_{n+1}$, $\phi_n(\xi_n) = \eta_n$, $\phi'_n(\xi_{n+1}+0) = \sigma_{n+1}$, $\phi'_n(\xi_n-0) = \sigma_{n-1}$, and such that $\phi'_n(\xi)$ is continuous and increases monotonically from σ_{n+1} to σ_{n-1} as ξ increases from ξ_{n+1} to ξ_n . That such a function exists is clear from the fact that an arc of an ellipse† can be found whose equation satisfies these conditions.

In the interval $-\xi_1 < \xi < \xi_1$, let $\phi(\xi) = 0$ for $-\xi_1 < \xi \le 0$, and let $\phi(\xi) = \phi_n(\xi)$ on I_n , $(n = 1, 2, 3, \cdots)$. Then it is easily verified that the curve $\eta = \phi(\xi)$ is of class $\{\mathfrak{C}\}$, and by construction it passes through the set S^* as ξ tends to zero through positive values. This completes the proof that $\{\mathfrak{C}\}$ has Property L, and establishes Theorem 6.

BROWN UNIVERSITY

 $\left[\eta - \eta_{n+2} - \sigma_{n+1}(\xi - \xi_{n+2})\right] \left[\eta - \eta_n - \sigma_{n-1}(\xi - \xi_n)\right] - k \left[\eta - \eta_{n+1} - \sigma_n(\xi - \xi_{n+1})\right]^2 = 0,$ for each $k > (\sigma_{n-1} - \sigma_{n+1})^2 / (4(\sigma_{n-1} - \sigma_n)(\sigma_n - \sigma_{n+1})).$

1935.]

[†]Such an ellipse is given by the equation