SOME THEOREMS ON DOUBLE LIMITS*

BY J. D. HILL \dagger

1. Introduction. Let $f(x, y)$ be an arbitrary single-valued real function of the real variables x, y defined in the neighborhood of a point $Q(a, b)$, which for simplicity may be taken as $(0,0)$. The following sufficient (and obviously necessary) condition for the existence of the double limit

$$
\begin{equation*}
\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f(x, y) \tag{1}
\end{equation*}
$$

has been established.
Theorem 1 (Clarkson). \ddagger If $f(x, y)$ has a unique limit as $P(x, y)$ approaches Q on every curve having a tangent at Q, the double limit (1) exists.

The present note is concerned with similar theorems, and for definiteness we state at the outset that the assertion, " $f(P)$ has a limit λ as $P \rightarrow Q$ on a point set E having Q as a limit point (or $\lim _{P \rightarrow Q} f(P)=\lambda$, on E)" shall mean that for each $\epsilon>0$ there exists a positive $\delta(\epsilon, E)$ such that $|f(P)-\lambda|<\epsilon$ for all points P of E satisfying the condition $0<|x|+|y|<\delta$.

Theorem 1 naturally suggests a question which is answered by Lemma 1, for convenience in the statement of which we introduce the following definition.

Definition of Property L. A class $\{E\}$ of sets E, each having Q as a limit point, will be said to have Property L if and only if any set S whatsoever of points having Q as a limit

[^0]point has a subset S^{*} which is contained in some one of the sets E and has Q as a limit point.

Lemma 1. A necessary and sufficient condition that the relation $\lim _{P \rightarrow Q} f(P)=\lambda$ on every set E of a class $\{E\}$ shall imply the existence of (1) is that $\{E\}$ have Property L.

This lemma, whose proof we leave to the reader, provides a criterion for determining whether or not an analog of Theorem 1 holds for other classes of curves or point sets.
2. The Class of Curves $\{\mathfrak{A}\}$. Let $\phi(s) \equiv \sum_{n=1}^{\infty} a_{n} s^{n}, \psi(s)$ $\equiv \sum_{n=1}^{\infty} b_{n} s^{n}$ be any two real power series with positive radii of convergence (say) ρ_{a}, ρ_{b}, respectively, and let ρ be chosen so that $0<\rho<\min \left(\rho_{a}, \rho_{b}\right)$. Then the equations

$$
\begin{equation*}
x=\phi(s), \quad y=\psi(s), \quad(|s| \leqq \rho) \tag{2}
\end{equation*}
$$

define a curve \mathfrak{N} through Q. We denote by $\{\mathfrak{N}\}$ the class of all such curves.

Theorem 2. The existence of a unique limit for $f(P)$ as $P \rightarrow Q$ on every curve of $\{\mathfrak{A}\}$ does not imply the existence of (1).

Proof. Let us assume the contrary, which implies that $\{\mathfrak{H}\}$ has Property L. We choose S as the set of points on the curve $y=e^{-1 / x^{2}}$ for $x>0$, and proceed to show that the definition of Property L is not satisfied. Suppose that there exists a curve \mathfrak{A}^{*} of $\{\mathfrak{H}\}$ and an infinite subset S^{*} of S of points $\left(\xi_{n}, \eta_{n}\right) \rightarrow(0,0)$, such that S^{*} lies on \mathfrak{U}^{*}. Then if (2) is the representation of \mathfrak{Y}^{*}, there must exist at least one value of s, say σ_{n}, for which $\phi\left(\sigma_{n}\right)$ $=\xi_{n}, \psi\left(\sigma_{n}\right)=\eta_{n},(n=1,2,3, \cdots)$. Let λ be any limit point of the sequence $\left\{\sigma_{n}\right\}$, and let $\left\{s_{n}\right\}$ be a subsequence of $\left\{\sigma_{n}\right\}$ such that $s_{n} \rightarrow \lambda$ as $n \rightarrow \infty$. If $\left\{\left(x_{n}, y_{n}\right)\right\}$ is the corresponding subset of $\left\{\left(\xi_{n}, \eta_{n}\right)\right\}$, we have $0<x_{n}=\phi\left(s_{n}\right) \rightarrow 0$, and $0<y_{n}=\psi\left(s_{n}\right) \rightarrow 0$, whence by continuity $\phi(\lambda)=\psi(\lambda)=0$. Consequently, in view of the relation $|\lambda| \leqq \rho<\min \left(\rho_{a}, \rho_{b}\right), \phi(s)$ and $\psi(s)$ have expansions of the form

$$
\begin{array}{ll}
\phi(s)=\sum_{n=\mu}^{\infty} \alpha_{n}(s-\lambda)^{n}, & \left(\mu \geqq 1, \alpha_{\mu} \neq 0\right), \\
\psi(s)=\sum_{n=\nu}^{\infty} \beta_{n}(s-\lambda)^{n}, & \left(\nu \geqq 1, \beta_{\nu} \neq 0\right), \tag{3}
\end{array}
$$

for $|s-\lambda|$ sufficiently small. Choose an integer m to satisfy the inequality $m \mu>\nu$, and consider the equation

$$
\frac{\psi\left(s_{n}\right)}{\left[\phi\left(s_{n}\right)\right]^{m}}=\frac{e^{-1 / x_{n}^{2}}}{x_{n}^{m}}, \quad(n=1,2,3, \cdots),
$$

which is implied by $S^{*} \subset \mathfrak{G}$. Using (3) one sees that the left side increases without limit as $n \rightarrow \infty$, while the right side tends to zero. This contradiction completes the proof.
3. The Class of Curves $\left\{\mathfrak{B}_{r}\right\}$. Let r be a preassigned real number, or ∞, and denote by $\left\{\Gamma_{r}\right\}$ the class of all single-valued functions of $z(=s+i t)$, each of which (i) is analytic in the extended plane except for a singularity at $z=r$, (ii) vanishes at $z=0$, and (iii) is real on the real axis. Then about $z=0$ each function in $\left\{\Gamma_{r}\right\}$ admits a power series expansion with real coefficients whose radius of convergence is $|r|$. Let $\left\{\Pi_{r}\right\}$ be the class of all such power series, and let $\left\{\mathfrak{B}_{r}\right\}$ be the class of all curves \mathfrak{B}_{r} through Q each of which is defined parametrically by

$$
\begin{equation*}
x=\phi(s) \equiv \sum_{n=1}^{\infty} a_{n} s^{n}, \quad y=\psi(s) \equiv \sum_{n=1}^{\infty} b_{n} s^{n}, \tag{4}
\end{equation*}
$$

where the power series belong to the class $\left\{\Pi_{r}\right\}$.
Theorem 3. For each fixed $r,(0<|r| \leqq \infty)$, the existence of a unique limit for $f(P)$ as $P \rightarrow Q$ on every curve of $\left\{\mathfrak{B}_{r}\right\}$ implies the existence of (1). \dagger

This theorem is an immediate consequence of Lemma 1 and the following two lemmas, the first of which may be regarded as evident.

Lemma 2. Corresponding to each enumerable set E there exists a set G of points $\left(x_{n}, y_{n}\right)$ with $E \subset G$ and $\left|x_{n}\right|,\left|y_{n}\right|<n,(n=1,2$, $3, \cdots$).

Lemma 3. Corresponding to each enumerable set E there exists a curve \mathfrak{B}_{r} of the class $\left\{\mathfrak{B}_{r}\right\}$ which passes through every point of $E . \ddagger$

Proof. Setting

[^1]$$
g_{m}(w) \equiv 2(-1)^{m+1} \prod_{m \neq \nu=1}^{\infty}\left(1-\frac{w^{2}}{\nu^{2}}\right) \equiv(-1)^{m+1} \frac{2 m^{2} \sin \pi w}{\pi w\left(m^{2}-w^{2}\right)}
$$
we have for $m=1,2,3, \cdots$,
\[

$$
\begin{align*}
& \left|g_{m}(w)\right| \leqq 2 e^{k|w|^{2}}, \quad \text { where } \quad k=\sum_{\nu=1}^{\infty} 1 / \nu^{2} \tag{5}\\
& g_{m}(\pm m)=1, \quad g_{m}(\pm n)=0, \quad(m \neq n=1,2,3, \cdots)
\end{align*}
$$
\]

We first assume r finite ; let $\rho=|r|$ and μ be the greatest integer $\leqq 1 / \rho$. Then there exists a σ satisfying the relation

$$
\begin{equation*}
\rho m-1>\sigma>0, \quad(m=\mu+1, \mu+2, \cdots) \tag{6}
\end{equation*}
$$

We define expressions c_{n} by the formula

$$
\begin{equation*}
c_{m}=1 /\left[m^{4}(\rho m-1)\right], \quad(m=\mu+1, \mu+2, \cdots) \tag{7}
\end{equation*}
$$

By Lemma 2 there exists a set G of points $\left(\xi_{n}, \eta_{n}\right)$ with $G \supset E$ and $\left|\xi_{n}\right|,\left|\eta_{n}\right|<n,(n=1,2,3, \cdots)$. Letting $m=\mu+n, x_{m}=\xi_{n}$, $y_{m}=\eta_{n},(n=1,2,3, \cdots)$, we have
(8) $\quad\left|x_{m}\right|,\left|y_{m}\right|<m-\mu \leqq m, \quad(m=\mu+1, \mu+2, \cdots)$.

From (5), (6), (7), (8), we obtain

$$
\left|c_{m} x_{m} g_{m}(w)\right|,\left|c_{m} y_{m} g_{m}(w)\right| \leqq 2 e^{k|w|^{2} / \sigma m^{3}}
$$

which shows that each of the infinite series

$$
\begin{equation*}
F_{1}(w) \equiv \sum_{m=\mu+1}^{\infty} c_{m} x_{m} g_{m}(w), \quad F_{2}(w) \equiv \sum_{m=\mu+1}^{\infty} c_{m} y_{m} g_{m}(w) \tag{9}
\end{equation*}
$$

converges uniformly in any finite region, and accordingly represents an entire function since $g_{m}(w)$ is entire. Moreover, since G may be assumed to include a point not on either axis, it is evident from the definitions of c_{m} and $g_{m}(w)$ that neither $F_{1}(w)$ nor $F_{2}(w)$ is a constant. Consequently
(10) $F_{3}(w) \equiv-w^{4}(r w+1) F_{1}(w), F_{4}(w) \equiv-w^{4}(r w+1) F_{2}(w)$
are entire functions with singularities at $w=\infty$. By means of the transformation

$$
\begin{equation*}
w=1 /(z-r) \tag{11}
\end{equation*}
$$

$F_{3}(w), F_{4}(w)$ are transformed respectively into functions $\phi(z)$, $\psi(z)$ which belong to $\left\{\Gamma_{r}\right\}$ and thus determine a curve $\mathfrak{B}_{r}{ }^{*}$ of the form (4). Finally [using (11), (10), (9), (7), and (5)] we obtain for $n=\mu+1, \mu+2, \cdots$

$$
\begin{aligned}
& \phi(r-1 / n)=x_{n}, \psi(r-1 / n)=y_{n}, \text { if } r>0, \\
& \phi(r+1 / n)=x_{n}, \psi(r+1 / n)=y_{n}, \text { if } r<0,
\end{aligned}
$$

which proves that the curve $\mathfrak{B}_{r}{ }^{*}$ passes through each point of G; E being a subset of G, the lemma is established for the case of r finite.

For $r=\infty$, the functions

$$
\phi(z) \equiv z^{4} \sum_{m=\mu+1}^{\infty} x_{m} g_{m}(z) / m^{4}, \quad \psi(z) \equiv z^{4} \sum_{m=\mu+1}^{\infty} y_{m} g_{m}(z) / m^{4}
$$

which belong to $\left\{\Gamma_{\infty}\right\}$, lead to the same conclusion if z is assigned the values $n=\mu+1, \mu+2, \cdots$.

In passing it seems of interest to mention the following corollary.

Corollary. There exists a curve \mathfrak{B}_{r} of the class $\left\{\mathfrak{B}_{r}\right\}$ which passes through every point in the plane with rational coordinates.

From Lemma 3 it is clear that the class $\left\{\mathfrak{B}_{r}\right\}$ has Property L; Theorem 2 then follows by Lemma 1.
4. The Class of Curves $\{\subseteq\}\}$. Let $F(x, y) \not \equiv 0$ be a real, singlevalued function of the real variables x, y which is analytic in some neighborhood of Q and for which $F(0,0)=0$. Then $F(x, y)$ $=0$ defines a curve \mathbb{C} through Q. Excluding those curves for which Q is an isolated point, we denote by $\{\mathbb{S}\}$ the class of all curves \mathfrak{C} which remain. By employing a well known theorem of Weierstrass, \dagger together with an analog of the Puiseux method for algebraic curves, one may readily verify that for each curve \mathfrak{C} of $\{\mathfrak{C}\}$ there exists a neighborhood of Q in which all points of \mathfrak{C} lie on a finite number of curves of class $\{\mathfrak{A}\}$. Combining this fact with the proof of Theorem 2 we obtain the following theorem.

Theorem 4. The existence of a unique limit for $f(P)$ as $P \rightarrow Q$ on every curve of $\{\mathfrak{\Im}\}$ does not imply the existence of (1).
\dagger Goursat-Hedrick-Dunkel, Functions of a Complex Variable, pp. 233 ff.

5．The Class of Curves $\{\mathfrak{D}\}$ ．Let $\{\mathfrak{D}\}$ denote the class of all curves \mathfrak{D} representable parametrically as

$$
x=x(s), \quad y=y(s), \quad(0 \leqq s \leqq 1),
$$

where $x(s)$ and $y(s)$ have derivatives of all orders and $x(0)$ $=y(0)=0$ ．

Theorem 5．If $f[x(s), y(s)]$ has a unique limit as s tends to zero for every curve of $\{\mathfrak{D}\}$ ，the double limit（1）exists．

Proof．Let S be any set of points having the point Q as a limit point，and let S^{*} be a subset of points $\left(x_{n}, y_{n}\right)$ tending to Q such that we have $\left|x_{n}\right|,\left|y_{n}\right|<e^{-1 / n^{2}},(n=1,2,3, \cdots)$ ．If we set $I_{1} \equiv(1 / 2 \leqq s \leqq 1)$ ，and $I_{n} \equiv[1 /(n+1) \leqq s \leqq(2 n+1) /(2 n(n+1))]$ ， （ $n=2,3,4, \cdots$ ），then the equations $x(0)=0, x(s)=x_{n+1}$ for s in I_{n} ，define a function with a closed domain which can be ex－ tended \dagger to the whole interval $(0 \leqq s \leqq 1)$ in such a way that the extended function $x(s)$ has derivatives of all orders．The func－ tion $y(s)$ is defined similarly．The corresponding curve \mathfrak{D} is such that the point $[x(s), y(s)]$ approaches Q through the set S^{*} as s tends to zero．This proves that $\{\mathfrak{D}\}$ has Property L ，and estab－ lishes the theorem．

6．The Class of Curves $\{⿷\}$ ．Let $\{\S\}$ be the class of all curves © through Q ，each of which has，with respect to a properly chosen system of rectangular coordinates ξ, η with origin at Q ， an equation of the form $\eta=\phi(\xi)$ ，where $\phi(\xi)$ is a single－valued function with a continuous，non－negative，monotonic increas－ ing first derivative in a certain neighborhood of $\xi=0$ and $\phi^{\prime}(0)=0$ ．For a fixed system ξ, η denote by $x(\xi, \eta), y(\xi, \eta)$ the coordinates of the point (ξ, η) in the original system x, y ．Con－ cerning the class of curves $\{⿷ \in\}$ we have the following theorem which is an improvement over Theorem 1 to the extent that $\{⿷\}$ is a proper subclass of the class considered by Clarkson．
Theorem 6．If $f[x(\xi, \phi(\xi)), y(\xi, \phi(\xi))]$ has a unique limit as ξ tends to zero for every curve of $\{\S\}$ ，the double limit（1）exists．

Proof．S being any set of points having Q as a limit point one readily sees by Clarkson＇s reasoning that axes ξ, η can be

[^2]so chosen that every closed sector lying in the first quadrant and having the ξ axis as one boundary will contain a subset of S having Q as a limit point. If S has a subset on the ξ axis with Q as a limit point, the curve $\eta=\phi(\xi) \equiv 0$ of class $\{\S\}$ passes through a subset of S with the limit point Q, and the definition of Property L is satisfied. In the alternative case, we can, by the choice of axes, select a subset S^{*} of S of points (ξ_{n}, η_{n}) tending to Q, such that we have
\[

$$
\begin{array}{ll}
0<\xi_{n+1}<\xi_{n} / 2, & 0<\eta_{n+1}<\eta_{n} / 2 \\
\eta_{n} / \xi_{n} \rightarrow 0 \text { as } n \rightarrow \infty, & 0<2 \eta_{n+1} / \xi_{n+1}<\eta_{n} /\left(2 \xi_{n}\right)
\end{array}
$$
\]

From these relations it follows that

$$
\frac{2 \eta_{n+1}}{\xi_{n+1}}<\frac{\eta_{n}}{2 \xi_{n}}<\frac{\eta_{n}-\eta_{n+1}}{\xi_{n}}<\frac{\eta_{n}-\eta_{n+1}}{\xi_{n}-\xi_{n+1}}<\frac{\eta_{n}}{\xi_{n}-\xi_{n+1}}<\frac{2 \eta_{n}}{\xi_{n}}
$$

hence $\sigma_{n} \equiv\left(\eta_{n}-\eta_{n+1}\right) /\left(\xi_{n}-\xi_{n+1}\right)$ tends monotonically to zero in the strict sense as $n \rightarrow \infty$. Consider the sequence of functions $\phi_{n}(\xi)$ defined as follows. Let $\phi_{n}(\xi)=\eta_{n+1}+\sigma_{n}\left(\xi-\xi_{n+1}\right)$ on the interval $I_{n} \equiv\left(\xi_{n+1} \leqq \xi \leqq \xi_{n}\right)$ for n odd. For n even, let $\phi_{n}(\xi)$ be any function on I_{n} such that $\phi_{n}\left(\xi_{n+1}\right)=\eta_{n+1}, \phi_{n}\left(\xi_{n}\right)=\eta_{n}$, $\phi_{n}^{\prime}\left(\xi_{n+1}+0\right)=\sigma_{n+1}, \phi_{n}^{\prime}\left(\xi_{n}-0\right)=\sigma_{n-1}$, and such that $\phi_{n}^{\prime}(\xi)$ is continuous and increases monotonically from σ_{n+1} to σ_{n-1} as ξ increases from ξ_{n+1} to ξ_{n}. That such a function exists is clear from the fact that an arc of an ellipse \dagger can be found whose equation satisfies these conditions.

In the interval $-\xi_{1}<\xi<\xi_{1}$, let $\phi(\xi)=0$ for $-\xi_{1}<\xi \leqq 0$, and let $\phi(\xi)=\phi_{n}(\xi)$ on $I_{n},(n=1,2,3, \cdots)$. Then it is easily verified that the curve $\eta=\phi(\xi)$ is of class $\{\Subset\}$, and by construction it passes through the set S^{*} as ξ tends to zero through positive values. This completes the proof that $\{\varsubsetneqq\}$ has Property L, and establishes Theorem 6.

Brown University

[^3]
[^0]: * Presented to the Society, April 19, 1935.
 \dagger I gratefully acknowledge my indebtedness to Mr. Hugh J. Hamilton for suggesting Lemma 1, and to Mr. Nelson Dunford for Theorem 5.
 \ddagger Clarkson, A sufficient condition for the existence of a double limit, this Bulletin, vol. 38 (1932), pp. 391-392. A theorem essentially the same has been proved by Verčenko and Kolmogoroff, Über Unstetigkeitspunkte von Funktionen zweier Veränderlichen, Comptes Rendus, Académie des Sciences, URSS, new series, vol. 1 (1934), pp. 105-107.
 § In particular, on a curve.

[^1]: \dagger It is worthy of note that, by Theorem 2, the existence of a unique limit for $f[\phi(s), \psi(s)]$ as $s,\left(|s| \leqq r^{\prime}<r\right)$, tends to zero for every curve of $\left\{\mathfrak{B}_{r}\right\}$ does not imply the existence of (1).
 \ddagger It may well be that this lemma or something like it is known, but we have been unable to locate it in the literature.

[^2]: \dagger Whitney，Analytic extensions of differentiable functions defined in closed sets，Transactions of this Society，vol． 36 （1934），pp．63－89，Theorem 1.

[^3]: \dagger Such an ellipse is given by the equation
 $\left[\eta-\eta_{n+2}-\sigma_{n+1}\left(\xi-\xi_{n+2}\right)\right]\left[\eta-\eta_{n}-\sigma_{n-1}\left(\xi-\xi_{n}\right)\right]-k\left[\eta-\eta_{n+1}-\sigma_{n}\left(\xi-\xi_{n+1}\right)\right]^{2}=0$, for each $k>\left(\sigma_{n-1}-\sigma_{n+1}\right)^{2} /\left(4\left(\sigma_{n-1}-\sigma_{n}\right)\left(\sigma_{n}-\sigma_{n+1}\right)\right)$.

