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SOME T H E O R E M S ON DOUBLE LIMITS* 

BY J. D. HILL f 

1. Introduction, Let f(x, y) be an arbitrary single-valued real 
function of the real variables x, y defined in the neighborhood of 
a point Q(a, b)> which for simplicity may be taken as (0, 0). The 
following sufficient (and obviously necessary) condition for the 
existence of the double limit 

(1) limf(x,y) 

y->0 

has been established. 

THEOREM 1 (Clarkson)4 If ƒ(#, y) has a unique limit as 
P(x, y) approaches Q on every curve having a tangent at Q, the 
double limit (1) exists. 

The present note is concerned with similar theorems, and for 
definiteness we state at the outset that the assertion, "f(P) has 
a limit X as P—>Q on a point set§ E having Q as a limit point 
(or limp^o f(P) = X, on E)" shall mean that for each e > 0 there 
exists a positive ô(e, E) such that \f(P)— X| <e for all points 
P of E satisfying the condition 0 < | x| +\y\ <8. 

Theorem 1 naturally suggests a question which is answered 
by Lemma 1, for convenience in the statement of which we 
introduce the following definition. 

DEFINITION OF PROPERTY L. A class {E} of sets E, each 
having Q as a limit point, will be said to have Property L if 
and only if any set S whatsoever of points having C a s a limit 

* Presented to the Society, April 19, 1935. 
t I gratefully acknowledge my indebtedness to Mr. Hugh J. Hamilton for 

suggesting Lemma 1, and to Mr. Nelson Dunford for Theorem 5. 
t Clarkson, A sufficient condition for the existence of a double limit, this 

Bulletin, vol. 38 (1932), pp. 391-392. A theorem essentially the same has been 
proved by Veröenko and Kolmogoroff, Über Unstetigkeitspunkte von Funktionen 
zweier Verànderlichen, Comptes Rendus, Académie des Sciences, URSS, new 
series, vol. 1 (1934), pp. 105-107. 

§ In particular, on a curve. 
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point has a subset S* which is contained in some one of the 
sets E and has Q as a limit point. 

LEMMA 1. A necessary and sufficient condition that the relation 
limp^Qf(P) ==X on every set E of a class {E} shall imply the exist
ence of (I) is that {E} have Property L. 

This lemma, whose proof we leave to the reader, provides a 
criterion for determining whether or not an analog of Theorem 1 
holds for other classes of curves or point sets. 

2. The Class of Curves {2l}. Let <f>(s)=^n~ians
n, \f/(s) 

=^2n=ibns
n be any two real power series with positive radii of 

convergence (say) pa, p&, respectively, and let p be chosen so 
that 0 <p <min (pa, p&). Then the equations 

(2) * = *(*), y = *M, ( M ^ P ) , 

define a curve 2Ï through Q. We denote by {21} the class of all 
such curves. 

THEOREM 2. The existence of a unique limit for f (P) as P—»Q 
on every curve of { 21} does not imply the existence of (1). 

PROOF. Let us assume the contrary, which implies that {21} 
has Property L. We choose S as the set of points on the curve 
y = e-Ux2 for # > 0 , and proceed to show that the definition of 
Property L is not satisfied. Suppose that there exists a curve 
21* of {21} and an infinite subset S* of 5 of points (£n, rçw)—KO, 0), 
such tha t S* lies on 21*. Then if (2) is the representation of 21*, 
there must exist at least one value of s, say an, for which 0(o*n) 
= £n> ^(o'n)=rjny (w = l, 2, 3, • • • ). Let X be any limit point of 
the sequence {crn}, and let {sn} be a subsequence of {o*n} such 
tha t sn—>X as n—*oo. If {(xw, yn)} is the corresponding subset 
of {(£n, Vn)}, we have 0<#n=<£(sn)—>0, and 0<yn=\f/(sn)-^01 

whence by continuity 0(X) =^(X) = 0. Consequently, in view of 
the relation |X| ^ p < m i n (pa, p&), 4>(s) and \[/(s) have expansions 
of the form 

X)-, (M è 1 , « M ^ 0 ) , 

X)-, (v ^ l,ft, * 0), 

(3) 

00) = ]C «n(s 

oo 
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for \s — X| sufficiently small. Choose an integer m to satisfy the 
inequality mfx > v, and consider the equation 

which is implied by 5* c §1*. Using (3) one sees that the left 
side increases without limit as n—»°o, while the right side tends 
to zero. This contradiction completes the proof. 

3. The Class of Curves {33r}. Let r be a preassigned real num
ber, or oo , and denote by {Tr} the class of all single-valued func
tions of z( = s+it), each of which (i) is analytic in the extended 
plane except for a singularity at z = r, (ii) vanishes at 2 = 0, and 
(iii) is real on the real axis. Then about 2 = 0 each function in 
{ r r } admits a power series expansion with real coefficients 
whose radius of convergence is \r\. Let {II r} be the class of all 
such power series, and let {$8r} be the class of all curves S3r 

through Q each of which is defined parametrically by 
00 00 

(4) % = </>(s) = ]F) anSn, y = I K J ) = X) ^ n , 
n=l n=l 

where the power series belong to the class {II r}. 

THEOREM 3. For each fixed r, (0 < | r \ ^ °o ), the existence of a 
unique limit for ƒ(P) as P-^Q on every curve of {S3r} implies the 
existence of ( l) .f 

This theorem is an immediate consequence of Lemma 1 and 
the following two lemmas, the first of which may be regarded 
as evident. 

LEMMA 2. Corresponding to each enumerable set E there exists 
a set G of points (xn, yn) with EcG and \xn\,\yn\ <n, (n=zl,2, 
3 , - . . ) . 

LEMMA 3. Corresponding to each enumerable set E there exists a 
curve S3r of the class {$8r} which passes through every point of E.% 

PROOF. Setting 

t It is worthy of note that, by Theorem 2, the existence of a unique limit for 
/[<Ê(S)> ip(s)] as s, (\s\ ^r'<r), tends to zero for every curve of {$8r\ does not 
imply the existence of (1). 

X It may well be that this lemma or something like it is known, but we have 
been unable to locate it in the literature. 
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2m2 sin irw 
gm(w) s 2 ( - l)*+i I I ( 1 - — ) s ( - l ) f 

m*v==\ \ V2/ TTW(m2 — W2) 

we have for m — 1, 2, 3, • • • , 
oo 

| gm(w) | ^ 2ejfel^l2, where £ = Z l/"2> 
(5) 

gm(± w) = 1, gm(± «) = 0, (m 5* n = 1, 2, 3, • • • ) . 

We first assume r finite; let p = | r\ and /x be the greatest integer 
^ 1/p. Then there exists a a- satisfying the relation 

(6) pw — 1 > a > 0, (m = M + 1, IJL + 2, • • • ) . 

We define expressions cn by the formula 

(7) cm = l/[m4(Pm - 1)], (w = /* + 1, M + 2, • • • )• 

By Lemma 2 there exists a set G of points (£n, r;n) with Go E and 
|€n|, | i ?n |<» , (» = 1, 2, 3, • • • ). Letting ?n=fx+n, xm = %ni 

ym = Vn, (^ = 1, 2, 3, • • • ), we have 

(8) | Xm I, I 3>m | < m — M ^ w, (w = M + 1, /x + 2, • • • ).. 

From (5), (6), (7), (8), we obtain 

| cm0Cmgm(w) | , | cmymgm{w) | ^ 2ek^w^'/W3, 

which shows that each of the infinite series 
00 00 

(9) Fi(w) = 2 2 £m#mgmO), F 2 ( w ) S ]T) Cmymgm(w) 
m=n+l m==M+l 

converges uniformly in any finite region, and accordingly repre
sents an entire function since gm(w) is entire. Moreover, since 
G may be assumed to include a point not on either axis, it is 
evident from the definitions of cm and gm(w) that neither F\{w) 
nor Fi(w) is a constant. Consequently 

(10) Fs(w) s= — w\rw + l)Fi(w), FA(w) s — w4(rw + l)F2(w) 

are entire functions with singularities at w; = oo . By means of the 
transformation 

(11) w = l / ( * - r ) , 
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Fs(w), F\(w) are transformed respectively into functions </>(s), 
\[/(z) which belong to {r r} and thus determine a curve 25r* of 
the form (4). Finally [using (11), (10), (9), (7), and (5)] we ob
tain for n = fx+l, M+2, • • • 

<t>(r — l/n) = xn, \p(r - l/n) = yn, if r > 0, 

<j>{r + l/n) = xny \p(r + l/n) = yny if r < 0, 

which proves that the curve 33r* passes through each point of 
G; E being a subset of G, the lemma is established for the case 
of r finite. 

For r = oo , the functions 
oo oo 

* ( * ) = S* 2 Xmgm(z)/m*, >Hz) = 2 4 X ) ymgm(z)/mi 

m=ju+l m=n+l 

which belong to {T^}, lead to the same conclusion if z is as
signed the values w=ju + l, ju + 2, • • • . 

In passing it seems of interest to mention the following corol
lary. 

COROLLARY. There exists a curve 33r of the class {$8r} which 
passes through every point in the plane with rational coordinates. 

From Lemma 3 it is clear that the class {$8r} has Property L; 
Theorem 2 then follows by Lemma 1. 

4. The Class of Curves {(£}. Let F(x, ^ ^ O b e a real, single-
valued function of the real variables x, y which is analytic in 
some neighborhood of Q and for which F(0, 0) =0 . Then F(x, y) 
= 0 defines a curve 6 through Q. Excluding those curves for 
which Q is an isolated point, we denote by {S} the class of all 
curves S which remain. By employing a well known theorem of 
Weierstrass,f together with an analog of the Puiseux method 
for algebraic curves, one may readily verify that for each curve 
6 of {©} there exists a neighborhood of Q in which all points 
of S lie on a finite number of curves of class {21}. Combining 
this fact with the proof of Theorem 2 we obtain the following 
theorem. 

THEOREM 4. The existence of a unique limit for f (P) as P—>Q 
on every curve of {(£} does not imply the existence of (1). 

t Goursat-Hedrick-Dunkel, Functions of a Complex Variable, pp. 233 ff. 
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5. The Class of Curves {$)}. Let {£)} denote the class of all 
curves 3) representable parametrically as 

x = x(s), y = y(s), (0 g s g 1), 

where x(s) and y(s) have derivatives of all orders and x(0) 
= y(0) = 0 . 

THEOREM 5. If f[x(s), y(s)] has a unique limit as s tends to 
zero for every curve of {2)}, the double limit (1) exists. 

PROOF. Let S be any set of points having the point Q as a 
limit point, and let S* be a subset of points (xn, yn) tending to Q 
such that we have \xn\, \yn\ <e~lln\ (n=l, 2, 3, • • • ). If we set 
/ i - ( l / 2 â ^ l ) , and / « s [ l / ( n + l ) g 5 â ( 2 n + l ) / (2n(n + l ) ) ] f 

(w = 2, 3, 4, • • • ), then the equations #(0) = 0 , x(s) =xn+i for s 
in In, define a: function with a closed domain which can be ex
tended f to the whole interval (O^s^l) in such a way that the 
extended function x(s) has derivatives of all orders. The func
tion y(s) is defined similarly. The corresponding curve 2) is such 
that the point [x(s), y(s)] approaches Q through the set 5* as s 
tends to zero. This proves that {©} has Property L, and estab
lishes the theorem. 

6. The Class of Curves {(§}. Let {©} be the class of all curves 
S through Q, each of which has, with respect to a properly 
chosen system of rectangular coordinates £, rj with origin at Q, 
an equation of the form ??=<£(£)> where <£(£) is a single-valued 
function with a continuous, non-negative, monotonie increas
ing first derivative in a certain neighborhood of £ = 0 and 
</>'(0) = 0 . For a fixed system £, rj denote by #(£, rj), y(£t rj) the 
coordinates of the point (£, rj) in the original system x, y. Con
cerning the class of curves {S} we have the following theorem 
which is an improvement over Theorem 1 to the extent tha t 
{S} is a proper subclass of the class considered by Clarkson. 

THEOREM 6. Iff[x(%, 0(f)), 3>(£> <£(£))] has a unique limit as 
£ tends to zero for every curve of {@}, the double limit (1) exists. 

PROOF. S being any set of points having C a s a limit point 
one readily sees by Clarkson's reasoning that axes £, t] can be 

f Whitney, Analytic extensions of differentidble functions defined in closed 
sets, Transactions of this Society, vol. 36 (1934), pp. 63-89, Theorem 1. 
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so chosen that every closed sector lying in the first quadrant and 
having the £ axis as one boundary will contain a subset of S 
having Q as a limit point. If 5 has a subset on the £ axis with Q 
as a limit point, the curve t\ = 0 ( £ ) E = O of class {(§} passes 
through a subset of S with the limit point Q, and the definition 
of Property L is satisfied. In the alternative case, we can, by the 
choice of axes, select a subset S* of S of points (£w, y]n) tending 
to Q, such that we have 

0 < £„+1 < fn/2, 0 < r)n+i < YJn/2 , 

r)n/%n -> 0 as » -> oo , 0 < 2rç„+i/&H-i < W(2£n) • 

From these relations it follows that 

2?7n+l Vn Vn "~ ty/j+l tyn ~~ ??w+l ??n 2 ^ n 

sn+1 ^hn sn sn sn-j-l sn sw+1 sn 

hence an=(rjn — rjn+i)/(^n — £»+i) tends monotonically to zero in 
the strict sense as n-^<x>. Consider the sequence of functions 
0n(£) defined as follows. Let <j>n{Ç) =^n+i+crw(£ — £n+i) on the 
interval Jn = (£n+i Ö £ = £n) for n odd. For w even, let $n(£) 
be any function on In such that 0w(£n+i) = rçw+i, </>w(£n)=??n, 
0n(fn+i+O)=<rn+i, 0n (£n —0)=o-n_i, and such that 0 n ( o is 
continuous and increases monotonically from an+i to <rn_i as £ 
increases from £n+i to £n. That such a function exists is clear 
from the fact that an arc of an ellipse f can be found whose 
equation satisfies these conditions. 

In the interval - & < £ < & , let 0(£)=O for - £ i < £ ^ 0 , and 
let </>(£) =0n(£) on 7W, (w = l, 2, 3, • • • ). Then it is easily veri
fied that the curve rj = </>(£) is of class {S} , and by construction 
it passes through the set 5* as £ tends to zero through positive 
values. This completes the proof that {(§} has Property L, 
and establishes Theorem 6. 

BROWN UNIVERSITY 

t Such an ellipse is given by the equation 

[y] — ?7n+2 — OTn+lft — £«+2) ] [*7 "~ 1?n — O n - l f t ~ £ n ) ] ~ & U ~~ 1?n+l — 0"nft — £n+l) ] 2 = 0 , 

for each k>{<rn~i— o-n+i)2/(4(o-n-i— <r„) (<r„— <r„+i)). 


