# THE RELATIVE CONNECTIVITIES OF SYMMETRIC PRODUCTS* 

## BY MOSES RICHARDSON

1. Introduction. The topology of the domain of discontinuity of a finite group of transformations operating on a complex, and, in particular, the topology of symmetric product complexes, has been studied by P. A. Smith $\dagger$ and the author. $\ddagger$ Following a suggestion made by Morse, § we obtain in this note explicit formulas for the so-called relative connectivities of the symmetric product of a complex in terms of its mod 2 Betti numbers, and we discuss an application of this result to the theory of critical chords. First, however, we derive a more general result of which the formulas for the relative connectivities of symmetric products is a special case. The methods used here follow closely those of S .
2. Definitions and Preliminary Theorems. For proofs or fuller discussion of statements made in this section, the reader is referred to S or R .

Let $K$ be a simplicial $n$-complex. $\|$ Let $T$ be a topological involution such that (a) $T$ carries $m$-simplexes of $K$ into $m$ simplexes of $K$; (b) if a simplex of $K$ is invariant, it is pointwise invariant.

The invariant simplexes of $K$ form a subcomplex $K^{0}$, and the non-invariant simplexes can be grouped in pairs so that each member of a pair is transformed into the other member by $T$. Thus the $m$-simplexes of $K$ can be renamed $E_{m}{ }^{i}, \bar{E}_{m}{ }^{i}, E_{m}{ }^{0 j}$, where $\bar{E}_{m}{ }^{i}=T E_{m}{ }^{i}$, and $E_{m}{ }^{0 j}$ is a simplex of $K^{0}$. If $\mathbb{T} C=t_{i} E_{m}{ }^{i}$ is a chain of

[^0]$K$, we define $T C$ to be the chain $\bar{C}=t_{i} \bar{E}_{m}{ }^{i}$. The involution $T$ preserves bounding relations. $\dagger$

We consider only mod 2 topology; all homologies and equations are understood to be homologies and congruences mod 2.

A chain $X$ of $K$ is called invariant if $X=\bar{X}$. In particular, if every simplex occurring in a chain with a non-zero coefficient belongs to $K^{0}$, we attach a zero to the chain-symbol, as $X^{0}$. If no simplex of $K^{0}$ occurs in a chain with a non-zero coefficient, we attach an asterisk to the chain-symbol, as $X^{*}$. Every invariant chain can be written in the form $X^{*}+\bar{X}^{*}+X^{0}$. If an invariant cycle $\Gamma$ is the boundary of an invariant chain, we write $\Gamma \cong 0$. These special homologies obey the same formal rules as ordinary homologies.

We choose a base for homology of type $\Gamma^{i}, \bar{\Gamma}^{i}, D^{i}$ for each dimension. $\ddagger$ We consider only the case in which (A) $D_{m}{ }^{j}+\bar{D}_{m}{ }^{j}$ $\cong 0$ for every $m>0$ and every $j$. In this case we can and do replace the $D_{m}{ }^{i}$ in the base by invariant cycles§ ${ }^{i} \Delta_{m}$.

We now construct the sequences

$$
\begin{equation*}
{ }^{i} \Delta_{m}^{m},{ }^{i} \Delta_{m-1}^{m}, \cdots,{ }^{i} \Delta_{r}^{m}, \quad(r=r(m, i) \geqq-1) \tag{1}
\end{equation*}
$$

where ${ }^{i} \Delta_{q}{ }^{m}={ }^{i} X_{q}{ }^{m}+{ }^{i} \bar{X}_{q}{ }^{m}$, and $F\left({ }^{i} X_{q}{ }^{m}\right)={ }^{i} \Delta_{q-1}^{m}$, (for $q=m, m-1$, $\cdots, r+1$ ), and ${ }^{i} \Delta_{r}^{m}={ }^{i} X_{r}^{m}+{ }^{i} \bar{X}_{r}^{m}+{ }^{i} X_{r}^{0 m}$, (for $r \geqq 0$ ), where the ${ }^{i} X_{r}^{0 m}$ are cycles. $\|$ We consider only the case where (B) the cycles ${ }^{i} X_{r}^{0 m}$ are independent with respect to homologies on $K^{0}$. We shall need the following lemmas. ${ }^{1}$
(2) If $C+\bar{C}+C^{0} \cong 0$, then $C^{0} \sim 0$ on $K^{0}$.
(3) The cycles $\Gamma_{q}^{i}+\bar{\Gamma}_{q}^{i},{ }^{i} \Delta_{q}^{m},(q>0)$, are independent with respect $t o \cong$.
(4) If (A) and (B) hold, every cycle of the form $C_{q}+\bar{C}_{q},(q>0)$, is $\cong$ to a linear combination of cycles $\Gamma_{q}^{i}+\bar{\Gamma}_{q}{ }^{i},{ }^{i} \Delta_{q}{ }^{m}$.

With the simplexes $E_{m}{ }^{i}$ and $\bar{E}_{m}{ }^{i}$ we associate $\dagger$ a simplex $e_{m}{ }^{i}$, and we write $\wedge E_{m}{ }^{i}=\wedge \bar{E}_{m}{ }^{i}=e_{m}{ }^{i}$. If $C=t_{i} E_{m}{ }^{i}$, we define $\wedge C$ to be the chain $c=t_{i} e_{m}{ }^{i}$. The totality of simplexes $e_{m}{ }^{i}$ constitutes

[^1]an $n$-complex $k=\wedge K$, say. In particular, the simplexes $e_{m}{ }^{0 i}$ $=\wedge E_{m}{ }^{0 i}$ constitute a subcomplex $k^{0}=\wedge K^{0}$, say. If $e=\wedge E$ is a simplex of $k$, we write $\wedge^{\prime} e=E+\bar{E}$. If $c=t_{i} e_{m}{ }^{i}$, we define $\wedge^{\prime} c$ to be the chain $t_{i} \wedge^{\prime} e_{m}{ }^{i}$. Both $\wedge$ and $\Lambda^{\prime}$ preserve bounding relations. We shall use large or small letters for chains of $K$ or $k$, respectively. In particular, a symbol like $x^{0}$ will denote a chain of $k^{0}$, and a symbol like $x^{*}$ will denote a chain in which no cell of $k^{0}$ occurs with a non-zero coefficient.
3. The Topology of $k \bmod k^{0}$. We shall now determine the Betti numbers $R_{q}\left(k ; k^{0}, 2\right)$. A chain whose boundary is a chain of $k^{0}$, that is, a cycle $\bmod k^{0}$, shall be called a relative cycle.
(5) If $c+x^{0} \rightarrow 0$, then $c$ is a relative cycle.

Proof. Let $F(c)=y^{*}+y^{0}$ and $F\left(x^{0}\right)=z^{0}$. Since $F\left(c+x^{0}\right)$ $=y^{*}+y^{0}+z^{0}=0$, we have $y^{*}=0$. Hence $c \rightarrow 0 \bmod k^{0}$.
(6) If $c+x^{0} \sim 0$, then $c \sim 0 \bmod k^{0}$.

Proof. There exists a chain $d$ such that $d \rightarrow c+x^{0}$. Thus $d \rightarrow c \bmod k^{0}$.
(7) If $\gamma$ is a relative cycle, then $\wedge^{\prime} \gamma$ is a cycle.

Proof. Since $\gamma \rightarrow x^{0}$, we have $\wedge^{\prime} \gamma \rightarrow \wedge^{\prime} x^{0}=X^{0}+\bar{X}^{0}=2 X^{0}=0$.
(8) If $\gamma \sim 0 \bmod k^{0}$, then $\wedge^{\prime} \gamma \cong 0$.

Proof. Since there exists a chain $c$ such that $c \rightarrow \gamma+x^{0}$, we have $\Lambda^{\prime} c \rightarrow \Lambda^{\prime} \gamma+\Lambda^{\prime} x^{0}$. But $\wedge^{\prime} x^{0}=0$. It is obvious that $\Lambda^{\prime} c$ and $\wedge^{\prime} \gamma$ are invariant.
(9) If c is a relative cycle, we can write $\wedge^{\prime} c$ in the form $C+\bar{C}$ where $\wedge C=c$.

Proof. Let $c=t_{i} e_{m}{ }^{i}+u_{i} e_{m}{ }^{0 i}$. We have only to let $C=t_{i} E_{m}{ }^{i}$ $+u_{i} E_{m}{ }^{0 i}$.
(10) If $C+\bar{C} \cong 0$, then $\wedge C$ is a relative cycle and $\wedge C \sim 0 \bmod k^{0}$.

Proof. By hypothesis, $H+\bar{H} \rightarrow C+\bar{C}$. Let $F(H)=C+X$. Then $X+\bar{X}=0$. Hence $X=X^{*}+\bar{X}^{*}+X^{0}$. Therefore,

$$
\wedge H \rightarrow \wedge C+\wedge X=\wedge C+2 \wedge X^{*}+\wedge X^{0}=\wedge C+\wedge X^{0}
$$

Thus $\wedge C+\wedge X^{0} \rightarrow 0$, and by (5), $\wedge C$ is a relative cycle. Since $\wedge H \rightarrow \wedge C+\wedge X^{0} \sim 0$, we have $\wedge C \sim 0 \bmod k^{0}$, by (6).
(11) For $q \geqq r(m, i)+1, \wedge\left({ }^{i} X_{q}{ }^{m}\right)$ is a relative cycle, say ${ }^{i} \xi_{q}{ }^{m}$, and $\wedge^{\prime}\left({ }^{i} \xi_{q}{ }^{m}\right)={ }^{i} \Delta_{q}{ }^{m}$.
Proof. If $q \geqq r(m, i)+2$, then, since ${ }^{i} X_{q}^{m} \rightarrow \Delta_{q-1}^{m}$, we have

$$
\wedge\left({ }^{i} X_{q}^{m}\right) \rightarrow \wedge\left(\Delta_{q-1}^{i}\right)=\bigwedge\left({ }^{i} X_{q-1}^{m}+{ }^{i} \bar{X}_{q-1}^{m}\right)=0
$$

Therefore, $\wedge\left({ }^{i} X_{q}{ }^{m}\right)={ }^{i} \xi_{q}{ }^{m}$ is an absolute cycle. If $q=r(m, i)+1$, we have

$$
\begin{aligned}
\wedge\left({ }^{i} X_{q}^{m}\right) \rightarrow \Lambda\left({ }^{i} \Delta_{q-1}^{m}\right) & =\wedge\left({ }^{i} X_{r}^{m}+{ }^{i} \bar{X}_{r}^{m}+{ }^{i} X_{r}^{0 m}\right) \\
& =\wedge\left({ }^{i} X_{r}^{0 m}\right)=0 \bmod k^{0}
\end{aligned}
$$

Thus, in this case, ${ }^{i} \xi_{q}{ }^{m}=\wedge\left({ }^{i} X_{q}{ }^{m}\right)$ is a relative cycle. In either case we have $\wedge^{\prime}\left({ }^{i} \xi_{q}{ }^{m}\right)={ }^{i} X_{q}{ }^{m}+{ }^{i} \bar{X}_{q}{ }^{m}={ }^{i} \Delta_{q}{ }^{m}$.

Let $\gamma_{q}{ }^{i}=\wedge \Gamma_{q}^{i}$.
(12) The relative cycles $\gamma_{q}^{i},{ }^{i} \xi_{q}{ }^{m},(q \geqq r(m, i)+1>0)$, are independent with respect to homology $\bmod k^{0}$.

Proof. Suppose there were a non-trivial homology

$$
x_{i m}{ }^{i} \xi_{q}^{m}+y_{i} \gamma_{q}^{i} \sim 0 \bmod k^{0}
$$

By (8) we have $\wedge^{\prime}\left(x_{i m}{ }^{i} \xi_{q}{ }^{m}+y_{i} \gamma_{q}{ }^{i}\right) \cong 0$. Thus, by (11),

$$
x_{i m}^{i} \Delta_{q}^{m}+y_{i}\left(\Gamma_{q}^{i}+\bar{\Gamma}_{q}^{i}\right) \cong 0
$$

contradicting (3).
(13) Every relative $q$-cycle of $k$ is homologous $\bmod k^{0}$ to a linear combination of the $\gamma_{q}{ }^{i}$ and ${ }^{i} \xi_{q}{ }^{m},(q \geqq r(m, i)+1>0)$.

Proof. Let $\gamma$ be an arbitrary relative $q$-cycle of $k$. Let $\wedge^{\prime} \gamma=\Gamma+\bar{\Gamma}$, where $\wedge \Gamma=\gamma$, by (9). By (7), $\wedge^{\prime} \gamma$ is a cycle. Therefore, by (4),

$$
\begin{equation*}
\Gamma+\bar{\Gamma} \cong x_{i}\left(\Gamma_{q}^{i}+\bar{\Gamma}_{q}^{i}\right)+y_{i m}^{i} \Delta_{q}^{m} \tag{14}
\end{equation*}
$$

Now we shall show that $y_{i m}=0$ whenever $r(m, i)=q$. For, if some $y_{i m} \neq 0$, then (14) would be of the form

$$
Y+\bar{Y}+z_{i m}\left({ }^{i} X_{q}^{m}+{ }^{i} \bar{X}_{q}^{m}+{ }^{i} X_{q}^{0 m}\right) \cong 0
$$

where some $z_{i m} \neq 0$. This implies that $z_{i m}{ }^{i} X_{q}{ }^{0 m} \sim 0$ on $K^{0}$, by (2). But this contradicts (B). Thus, (14) has the form

$$
\Gamma+\bar{\Gamma}+x_{i}\left(\Gamma_{q}^{i}+\bar{\Gamma}_{q}^{i}\right)+y_{i m}\left({ }^{i} X_{q}^{m}+{ }^{i} \bar{X}_{q}^{m}\right) \cong 0
$$

where $q \geqq r(m, i)+1$. Let $C=\Gamma+x_{i} \Gamma_{q}^{i}+y_{i m}{ }^{i} X_{q}{ }^{m}$. Then $C+\bar{C} \cong 0$, and, by (10), we have $\wedge C \sim 0 \bmod k^{0}$, or

$$
\gamma+x_{i} \gamma_{q}^{i}+y_{i m}^{i} \xi_{q}^{m} \sim 0 \bmod k^{0}
$$

This proves the theorem.
By (12) and (13), the relative cycles ${ }^{i} \xi_{q}{ }^{m}, \gamma_{q}{ }^{i},(q \geqq r(m, i)+1$ $>0$ ), constitute a base for relative $q$-cycles of $k$ with respect to homology $\bmod k^{0}$. Let $R_{q}^{\Gamma}$ be the number of cycles $\Gamma_{q}^{i}$, and let $Q_{q}$ be the number of $q$-cycles ${ }^{i} \Delta_{q}{ }^{m}$ satisfying the relation $r(m, i)+1 \leqq q$. We have proved the following theorem.

Theorem 1. If the hypotheses (a), (b), (A), and (B) are fulfilled, then $R_{q}\left(k ; k^{0}, 2\right)=R_{q}^{\Gamma}+Q_{q},(q>0)$.
4. Symmetric Products. Let $K_{2 n}=K_{n} \times K_{n}$ be the complex $K$ of the preceding sections. Let $T$ be the involution which interchanges the points $P \times Q$ and $Q \times P$ of $K_{2 n}$. A simplicial subdivision of $K_{2 n}$ satisfying (a) and (b) of $\S 2$ can be found. $\dagger$ Of course, $\wedge K_{2 n}=k_{2 n}$ is the 2 -fold symmetric product of $K_{n}$. We can choose bases for homology on $K_{2 n}$ of the $\Gamma, \bar{\Gamma},{ }^{i} \Delta$ type here required. $\ddagger$ The cycles ${ }^{i} \Delta_{q}$ occur only in even dimensions. It has been shown that the sequences (1) can be constructed so that $r(2 h, i)=h$ for all $i$, and so that (A) and (B) are fulfilled. § Therefore we may apply Theorem 1.

Now let $R_{2 s}^{\Delta}=R_{s}\left(K_{n}, 2\right)$ for $s \leqq n$ and $R_{2 s}^{\Delta}=0$ for $s>n$. Then it is easily seen that $Q_{1}=0$ and

$$
Q_{q}=R_{2 t}^{\Delta}+R_{2(t+1)}^{\Delta}+\cdots+R_{2(q-1)}^{\Delta}, \quad(q>1)
$$

where $t=[(q+1) / 2]$, since the lowest dimension $2 m$ to yield cycles ${ }^{i} \Delta_{q}{ }^{2 m}$ is either $2 m=q$ or $2 m=q+1$. Thus by Theorem 1 , we have the following result.

Theorem 2. For the symmetric product $k_{2 n}$ of $K_{n}$ we have
$R_{1}\left(k_{2 n} ; k_{n}^{0}, 2\right)=R_{1}^{\Gamma}$
$R_{q}\left(k_{2 n} ; k_{n}^{0}, 2\right)=R_{q}^{\Gamma}+R_{2 t}^{\Delta}+R_{2(t+1)}^{\Delta}+\cdots+R_{2(q-1)}^{\Delta}, \quad(q>1)$, where $t=[(q+1) / 2]$, and where

[^2]$$
\stackrel{\Gamma}{R_{q}}=\frac{1}{2}\left[R_{q}\left(K_{2: u}, 2\right)-R_{q}^{\Delta}\right]
$$
if $q$ is even, and
$$
R_{q}^{\Gamma}=\frac{1}{2} R_{q}\left(K_{2 n}, 2\right)
$$
if $q$ is odd.
Of course, if $K_{n}$ is connected, so is $k_{2 n}$; hence $R_{0}\left(k_{2 n} ; k_{n}{ }^{0}, 2\right)=0$ in this case. The numbers $R_{q}\left(k_{2 n} ; k_{n}{ }^{0}, 2\right)$ have been called relative connectivities by Morse, $\dagger$ who proved that they are finite. $\ddagger$ This result is of course implied by our formulas.

Example 1. Let $K_{n}$ be an $n$-sphere. Then $R_{n}^{\Gamma}=R_{2 n}^{\Delta}=1$, while all the other $R^{\mathrm{F}}$, s and $R^{\Delta}$, , are zero. From our formulas, we obtain for the relative connectivities of $k_{2 n}$,

$$
\begin{aligned}
R_{0} & =R_{1}=\cdots=R_{n-1}=0 \\
R_{n} & =R_{n}^{\Gamma}=1 \\
R_{n+1} & =R_{2(q-1)}^{\Delta}=R_{2 n}^{\Delta}=1 \\
R_{n+2} & =R_{2(q-2)}^{\Delta}=R_{2 n}^{\Delta}=1 \\
\cdot & \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
R_{2 n} & =R_{2 t}^{\Delta}=R_{2 n}^{\Delta}=1
\end{aligned}
$$

The values of the relative connectivities for this example were worked out by Morse§ by special methods involving the critical chords of an $n$-ellipsoid.

Example 2. Let $K_{n}$ be an orientable surface of genus $p$. Then the relative connectivities of the symmetric product $k_{2 n}$ are $R_{0}=0, R_{1}=2 p, R_{2}=2 p^{2}+p+1, R_{3}=2 p+1, R_{4}=1$.
5. Application to the Theory of Critical Chords.\| The chief results concerning critical chords are as follows. Let $R$ be a regular, analytic Riemannian $n$-manifold lying in a euclidean ( $n+1$ )space, such that $R$ is homeomorphic to a simplicial $n$-complex $K_{n}$. Then the symmetric product of $R$ is evidently homeo-

[^3]morphic to the symmetric product $k_{2 n}$ of $K_{n}$. Let $R_{0}, R_{1}, \cdots$, $R_{2 n}$ be the relative connectivities of $k_{2 n}$. Then the sums $M_{i}$ of the type numbers of the critical sets of chords of $R$ and the numbers $R_{i}$ satisfy the relations
$M_{0} \geqq R_{0}, M_{0}-M_{1} \leqq R_{0}-R_{1}, M_{0}-M_{1}+M_{2} \geqq R_{0}-R_{1}+R_{2}$,
$M_{0}-M_{1}+\cdots+(-1)^{2 n} M_{2 n}=R_{0}-R_{1}+\cdots+(-1)^{2 n} R_{2 n} . \dagger$
A simple corollary of this theorem is this: If the critical chords of $R$ are all non-degenerate, there exist at least $R_{i}$ such chords of index $\ddagger i$.

Our Theorem 2 enables us to obtain the values of the relative connectivities $R_{i}$ of $k_{2 n}$ when the mod 2 Betti numbers of $R$ are known. Thus the above theorem and its corollary can be used to obtain numerical information concerning the critical chords of any $R$ whose mod 2 Betti numbers are known. This makes available a wide class of examples. For instance, the corollary of M, p. 191 follows at once from the above corollary and our Example 1, §4.

As a further example, let $R$ be any regular, analytic image of an orientable surface of genus $p$. Then, from Example 2, §4, and the above corollary, we obtain the result that, if the extremal chords of $R$ are all non-degenerate, then, among these extremal chords there must be $2 p^{2}+5 p+3$ extremal chords of the following description: $2 p$ extremal chords of index $1,2 p^{2}+p+1$ extremal chords of index $2,2 p+1$ extremal chords of index 3 , and 1 extremal chord of index 4 . In the degenerate case, the same result holds provided each critical set of chords is counted according to its type numbers.

Brooklyn College

[^4]
[^0]:    * Presented to the Society, February 23, 1935.
    $\dagger$ P. A. Smith, The topology of involutions, Proceedings of the National Academy of Sciences, (1933), pp. 612-618. (Denoted hereafter by S.)
    $\ddagger$ M. Richardson, On the homology characters of symmetric products, Duke Mathematical Journal, vol. 1 (1935), pp. 50-69. (Denoted hereafter by R.)
    § M. Morse, The Calculus of Variations in the Large, Colloquium Publications of this Society, vol. 18, 1934, p. 191. (Denoted hereafter by M.)
    || Our general topological terminology and notation is that of S. Lefschetz, Topology, Colloquium Publications of this Society, vol. 12, 1930.

    II A repeated index indicates summation.

[^1]:    $\dagger \mathrm{R}, \mathrm{s} 1$.
    $\ddagger \mathrm{S}$, § 1.
    § S, p. 614.
    || S, p. 614.
    II S, pp. 613-615.
    $\dagger$ The material in this paragraph is fully discussed in $R, \$ 2$.

[^2]:    $\dagger$ R, §5.
    $\ddagger$ R, p. 57.
    § R, pp. 64-65.

[^3]:    $\dagger$ M, p. 182.
    $\ddagger$ M, pp. 182-183.
    § M, Theorem 11.3, p. 191.
    || For definitions and proofs required in this section see M, pp. 181-191.

[^4]:    $\dagger \mathrm{M}$, Theorem 11.1, p. 185.
    $\ddagger$ M, p. 185.

