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1 — k 1 — p 

> 0"(1 - I «p, ) - a « - - ePi -
1 — k 1 — /5 

\ ' % ' 0 " 0"(1 - A ) * 1-pJ 

Now for i sufficiently large all the terms within the last paren
theses except the first are as small as we please. Hence for suffi
ciently large i the difference in question is positive. From this 
contradiction the theorem follows. 

In conclusion, we may note as a simple corollary of the above 
theorem that if l i m , ^ | an |

1/n = 1, then limn-.oo|fln+i/an| = 1 if 
and only if there exists a sequence of real numbers \ n such that 
limnH>0OX„ = l andïïïn^ool |an+i| - X w | a n | | 1 / n < l . 
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1. Introduction. I t is well known $ that if 
00 

(1) ƒ(*) = Z «»2" 
n=0 

is regular for \z\ ^ 1, and if E is defined by the formula 

(2) E = maximum | <RJ(Zl) - î l / f e ) |, 
| s i l = l * « l = l 

* Presented to the Society, February 23, 1935. 
t National Research Fellow. 
t See E. Landau, Archiv der Mathematik und Physik, (3), vol. 11 (1906), 

pp. 31-36. 
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or, in other words, if E is the oscillation of the real part of 
f(z) for all points Z\ and z2 on the unit circle, then 

(3) | a i | = | / ( 0 ) | £—E. 
7T 

In this paper an analogous result and extensions are obtained 
for all the coefficients of any function ƒ(z) regular and typically-
real for \z\ < 1 . 

DEFINITION. A function ƒ(*), / ( 0 ) = 0 , / ' ( 0 ) ^ 0 , regular for 
\z\ <R, is said to be typically-real with respect to the circle 
121 =2?, if within this circle ƒ(z) is real for, and only for, the 
points on the real axis.* 

I t may be noticed, as W. Rogosinski has pointed out, that 
the class of functions regular and univalent in the circle | z | = R 
and real on the real axis form a subclass of the class of functions 
typically-real with respect to this circle. 

2. A Stieltjes Integral Representation f or Typically-Real Func
tions. Let 

00 

(4) f(z) = z + X) <*nzn, (an real), 

be regular and typically-real for \z\ < 1. Then it is known f that 
f(z) can be represented in the form 

(5) / ( 2 ) = - ^ , 
1 — z2 

where g(z) is regular for \z\ < 1 , g(0) = l, <Rg(z)>0 for \z\ < l . 
Further, by the formula of G. Herglotz,J we may write 

1 r * 1 + e~i0z 

ITU-* 1 — er*z 
(6) 

1 rT 1 - z2 - 2izsm$ 
2>irJ-T 1 - 2zcos6 + z2 

* See W. Rogosinski, Über positive harmonische Entwicklungen una typisch-
reelle Potenzreihen, Mathematische Zeitschrift, vol. 35 (1932), pp. 93-121. 

t See W. Rogosinski, loc. cit., p. 99. 
X See G. Herglotz, Leipziger Berichte, 1911, pp. 501-511. 
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where a(0) is an odd non-decreasing function of 6 in the interval 
( — 7T, 7r), and where ƒ(z) is real on the real axis, as is also g(z). 
Hence 

I f " zda(0) 
/ ( 2 ) = ~" 1 Ô 7 T T 

x •/ o 1 — 22 cos 0 + sr 
(7) 

1 r T ( A sin n$ \ 

= - f Z - — **)da(fi). 
T J o \ n = l S1I1Ö / 

L. Fejér has observed* that 

( 8) F(z)= f^è = 2+Ê-2», 
J o z i n 

is univalent and convex in the direction of the imaginary axis 
for \z\ < 1, that is, no straight line parallel to the imaginary axis 
can cut the image of the circle | z\ =r (for every r in the interval 
0 < r < l ) mapped by the function F(z) in more than two points. 
I t follows from (7) and (8) by integration that 

(9) 
1 r* ( 1 - ze~ie) da(6) 1 r* fl - ze~%e\ 

= 2W Jo l 0 g I 1 - ztf>) sin 0 

3. The Coefficients of a Typically-Real Function. From (9), since 
F(r) is real, we have 

1 rT da(d) 
(10) F(r) = — arg (1 - rer») — — 

7T J o sin 0 
Since the integrand is an increasing function of r for every 0, 
we have 

1 CT da(6) 
F(l) s lim F(r) = — lim arg (1 - r*-«) 

r-i 7T J n '->i sin 0 
1 rT

 T - 6 
= — — **(«). 

2x */ o sin 0 
Similarly we also have 

(12) F(- 1) = l i m F ( - r) = ^ — f ' —da(d). 
r->i 2ir J o s in 0 

* See L. Fejér, Journal of the London Mathematical Society, vol. 8 (1933), 
p. 61,footnote. 
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These limits are finite or infinite according as the integrals exist 
or do not exist. Hence if we define 

rr fit) r+l/(rt) 
(13) E(r) = F(r) - F ( - r) = I — dt = ^ — dt, 

J —r t J — l / 

then 

1 r* da(B) 
(14) £ s lim E(r) = — - 7 — , 

r—l 2 J o sin 0 
and is finite whenever this integral exists. However, since F{z) 
is convex in the direction of the imaginary axis, and since E(r) 
is the length of the segment of the real axis intercepted by the 
contour into which \z\ =ris mapped by F(z), we have 

(15) | W(*i) - <*?(**) I ^ F(r) -F(-r) = E(r) 

for all z\ and z2 on \z\ =r. Thus E(r) denotes the oscillation of 
the real part of F{z) on \z\ =r. 

From (4) and (7) we have, by comparing coefficients on both 
sides of the equation (7), 

1 e T sin nd 
(16) an = — I da(0), 

ir J o sin 0 
da(6) . . 1 rT\smnd\ 1 rr 

(17) \ a n \ ^ - \——\da(fi) è — 
T J o I Sin 6 I 7T J o sin 0 

Whenever E is finite we have, by (14) and (17), 

(18) I an\ S—E, for all n, 
T 

1 » , , 1 fT da(0) 
(19) — T T Z | a * | ^ — I Mn(fi) 

T JQ 

where 

n + 1 k=i T J o sin 0 

Mn(0) s — — 2 I sin *0 | 
» + 1 *-i 

However, as T. Gronwall has shown,* 

* See T. Gronwall, Transactions of this Society, vol. 13 (1912), pp. 445-
468. 
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(20) Mn{6) < sin z0 = 0.72457 

where z0 is the positive root of the equation tan (z0/2) = 20. 
Further, 

2 
(21) lim Mn{6) = Jf(0) g —, 

lim — E I «* I ^ — I lim Af,(0) — 
«-*oo w =̂,1 7T J o »-»°° sir 

2 1 /•* da(0) / 2 \ 2 

(22) g _ l i . g ( _ ) £ . 
7T 7T Jo sm0 \ 7 r / 

Similarly, 
1 » , / 2 s i n 3 0 \ / 1 - 4 S \ 

(23) —— Z Kl <( ) £ < ( )£, 

for all w. 
Again, if we denote by rw the expression 

» I sin k61 
(24) rw = maxX) J L> 

then we have* 

2 A 1 2 ^ 1 2 

(25) - Z T < r n < - E - + -> 

r 2 
(26) l i m — — = — 

W-»oo l o g ^ 7T 

Hence by the method used above in (19) we may show that 

A | a*| (7 2 y / 2 Vv H 
fc==1 & W T T / \7r/&=i kf 

(28) E « f Jĵ  
w-+oo l o g W A;=l # 

Let 

* See G. Pólya and G. Szegö, Aufgaben und Lehrsdtze aus der Analysis, 
vol. 2, 1925, pp. 81 and 274. 
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JL sin k$ 
(29) A(n,d)^Z —— • 

Then the absolute maximum* of A(n, 6) is A(n, 7r/(# + l ) ) . 
Consequently we obtain by the above method 

(30) 
/b=i k 

< — Ain, —^—)E. 
"" 7T \ n+1/ 

For n odd the factor 2/TT in (18) cannot be replaced by a 
smaller one, since for the function ƒ(z) = z(l +z2)~l we have 

i i T 

I ci2n-i | = 1, d2n = 0, F{z) = arc tan 2;, E = — 

Hence equality is attained by ^ ( l + s 2 ) " 1 for every odd value of 
n. However, one cannot have equality for all n, even and odd, 
for a given function of the class under consideration, as this 
would contradict the inequality (22). 

4. A Class of Odd Typically-Real Functions. Let / denote the 
class of odd functions 

00 

(31) ƒ(*) = * + S è2n+12
2"+1 

n = l 

with the properties 
(a) ƒ(z) is regular for \z\ < 1, 
(b) f(z) is real on the real axis, that is, &2n+i is real for all n, 
(c) ƒ(*) lies inside the jth quadrant whenever z is inside the 

jth quadrant for \z\ < 1 , (.7 = 1, 2, 3, 4). 
The class of odd functions regular and univalent for \z\ < 1 

and real on the real axis form a subclass of 7. 

THEOREM. If 
00 

ƒ(*) = * + Z &2n+l*
2w+1 

belongs to class 7, ^ew 

&2fc+l 
*a| ^ 1, | *i»-i | + | W i | ^ 2 , E — i - è - 2 . 

* See G. Pólya and G. Szegö, loc. cit., p. 79. 
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PROOF. Letf(reîd) =u(r, S)+iv(r, 6). 

1 rr 

(32) b2n+1r
2n+1 = — I v(r, 0) sin {In + 1)0 dO, 

7T J _ T 

1 r 
(33) 62»>+i'2n+1 = — «(r, 0) cos (2« + 1)6 dd. 

7T J - x 

On account of hypotheses (b) and (c) of the definition of class 
I we may write 

4 r TI2 

(34) &2n+ir2n+1 = — I v(r, 0) sin (2» + 1)0 d0, 
7T J o 

(35) b2n+1r
2n+1 = — «(r, 0) cos (In + 1)0d0, 

T J 0 

where v(r, 0) > 0 , #(r, 0)>O for O < 0 < T T / 2 , r < l . From (34) we 
have 

8 r* / 2 

(36) i2n+ir2n+1 - b2n-ir
2n~l = — I »(r, 0) cos 2n6 sin 0 d6, 

so that 

8 r T/2 

b2n+ir2n+l - b.n-tf2"-11 ^ — I v(r, 0) sin 0 | 

8 r / J 8 fT/2 

^ — I v(r, 0) sin 0 c 
T J o 

^ 2r. 

Letting r -» l , we have 

(37) I b2n-i — &2n+i | ^ 2 . 

From (35) we have similarly 

g /» T/2 

I fon-lf2*"1 + &2n+ir2n+1 | ^ — I | u(f9 6) COS 2^0 COS 0 (20 
7T J 0 

8 rW 2 

(38) ^ — I * ( r , 0) cos 0^0 
7T J Q 
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Letting r—>1 again, we have 

(39) | &2n-l + W | ^ 2, 

Combining (37) and (39) we obtain 

(40) | b2n-i | + | W i | ^ 2 , (for all n). 

The inequalities (40) were established by a different method 
for the subclass of / consisting of odd univalent functions real 
on the real axis by J. Dieudonné.* Further, since we havef 

* cos ke 
(41) B(n, 0) - £ — r - ^ ~ 1 

for all n, then 

A ( W W 1 - ^ t - i f 2 *" 1 ) 

8 r / 2 

= — I B{n, B)v{r, 6) sin 6 c 
TT Jo 

(43) f ( W l " f t " - J
2 ! - 2 , 

and similarly 

(44) j ; ( 6 2 w + 62fc-i) ^ 2 . 

On adding (43) and (44) we obtain also 

(45) Z ^ - 2 . 

T H E UNIVERSITY OF CHICAGO 

* See J. Dieudonné, Annales de l'École Normale, vol. 48 (1931), p. 318. 
t See G. Pólya und G. Szegö, loc. cit., p. 79. 

(42) 

^ - 2r. 


