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DERIVATIVES OF H I G H E R ORDER AS 
SINGLE LIMITS* 

BY PHILIP FRANKLIN 

1. Introduction. If a function has an nth. derivative at a point, 
the value of this derivative may be calculated by taking the 
limit of a suitable quotient involving the nt\\ difference, as the 
fundamental difference for the independent variable approaches 
zero. However, the limit of this quotient may exist without the 
function having the corresponding derivative. The principal 
result of this paper deals with the expression for unevenly spaced 
points, which reduces to the quotient mentioned above when the 
points are equidistant. I t is shown that the existence of the 
limit of this expression, when the points close down in any way 
whatever to a fixed point, is a necessary and sufficient condi
tion for the function to have an nth. derivative throughout some 
neighborhood of the fixed point, continuous at the point. Some 
applications to finite Taylor developments are considered. A 
condition for the mere existence of the derivative is also given. 

2. Earlier Results, A precise statement of the theorem on nth 
differences,f as proved by de la Vallée-Poussin, is that 

Any 
(1) l i m T ^ = / ^ ( ^ o ) , 

h-^o hn 

if y =ƒ(#) has an nth derivative at x0, where Any is the nth dif
ference defined by the formulas 

Anf(x) = A w -yO + h) - An-lf(x), 

Af(x) = f(x+h) - ƒ ( * ) . 

The corresponding expression for unevenly spaced points is, 
except for a numerical factor, n\, 

(2) An,k= £ J-±-^ , 
y-l (X,— Xi) ' ' • (Xj— Xj-i)(Xj— tf/+i) ' • • (fff—ff«4i) 

* Presented to the Society, December 27,1933. 
t de la Vallée-Poussin, Cours d'Analyse Infinitésimale, vol. 1, 1921, p. 73. 
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as is seen by comparing Newton's and Lagrange's interpolation 
formulas. I t is sometimes convenient to write this in terms of 
determinants : 

j(Xj), Xjn , • • * , Xj, 1 I 

I /yti /y.W—1 . . . /V . 1 I 

We have written only the jth row, (j = 1, 2, • • • , w + 1), for the 
rest. 

I t has been shown by the writer* that if y - ƒ(#) has an nth 
derivative at a, continuous in some neighborhood of xo, then as 
the points close down to a, that is, 

(4) lim ek = 0, | Xj — a | < e&, 

we shall have 

(5) f M (a) = lim n\An,k. 

A similar result was proved f for the case of a complex inde
pendent variable, with the points closing down in any way, and 
f(x) an analytic function. 

The limit using the nth difference is too broad to be used as a 
definition of a derivative. For this limit may exist without there 
being a derivative. An example is the function y = bxy when x 
is rational, y = cx, when x is irrational. If # = 0, the points 0, 
h, 2hy - - - , nh, are either all rational or all irrational, so that 
at 0, A2y = 0r and lim A2y/h2 — 0. However, the function fails to 
have a first derivative at the origin, and hence has no second 
derivative there. 

Again, as a definition of mere existence of a derivative, the 
use of Antk with points closing down arbitrarily is unsatisfactory 
since it fails to give correct results unless the derivative is con
tinuous at the point a considered. For, if the n points are al
lowed to come together at a point near a, in the proper way, for 
example with equal spacing, they will give the derivative at this 
point. If the derivative is not continuous at a, this derivative 
will not approach the value at a, when the nearby point ap
proaches a. 

* Transactions of this Society, vol. 28 (1926), p. 403. 
t This Bulletin, vol. 33 (1927), p . 465. 
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3. Condition for a Continuous nth Derivative. Consider a se
quence of sets of n + 1 points. Call the &th set Sk, and let its ele
ments satisfy (4). Then we shall say that the set Sk closes down 
on a. For each set we may form An,k by (2), or (3). We may now 
formulate* the following theorem. 

THEOREM 1. The existence of a unique limit for An,k as the 
points of Sk close down on a in an arbitrary manner is a neces
sary and sufficient condition for f{x) to have an nth derivative 
fn(a), continuous at a. The value of the derivative is given by (5). 

That the condition is necessary f follows from Rolle's theorem 
and Lagrange's interpolation formula. For 

(6) F{x) 

_ » (x-xi) • • • (x-~Xi-.i)(x-Xj+i) • • • (%-xn+i) 

j=l \Xj X\) • • • \Xj Xj—i)\Xj Xj+i) • • • \Xj Xn+\) 

is a polynomial of the nth. degree agreeing with ƒ (x) a t the points 
of Sk. Hence, ƒ(#) — F(x) vanishes at n + 1 points, and by suc
cessive application of Rolle's theorem its nth derivative vanishes 
at some point X, interior to the interval whose end points are 
the extreme points of Sk* That is, 

(7) F^(X) =ƒ<»>(*). 

But from (2) and (6), 

(8) F(X) = An,*X* + Pn-l( tf) , 

where Pw-i(#) is a polynomial of the (» — l) th degree, so that 

(9) F^(X) = n\An,k. 

Since the points of Sk are closing down on a, X approaches a 
as a limit, so that from the continuity of/ ( n )(x), 

(10) lim n\An,k = lim ƒ<»>(*) = fw{a). 
k—* °o X-*a 

This proves the necessity of the condition. 

* Hassler Whitney, Transactions of this Society, vol. 36 (1934), p. 369. 
This paper contains certain similar results of this type, involving uniformity 
conditions. 

t Transactions of this Society, vol. 28 (1926), p. 403. 
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We shall prove the sufficiency of the condition by mathemati
cal induction. For n = 1, we have 

,„, A ƒ(*»)-/(*0 
(11) A 1 ) k = 

x2 — Xi 

By taking Xi = a, and letting x2 approach a, we see that f (a) 
exists. Again, since the limit must exist when x2 approaches X\, 
and then if we let x2 remain coincident with Xi and approach a, 
we have 

(12) f(a) = lim lim Alth = l im/ ' (*i) , 
x i—*a x 1-+X i x i-+a 

so that f'(xi) exists for Xi near a, and is continuous at a. We ac
cordingly assume as the basis of the induction that the condi
tion is sufficient for n = 1, 2, » • • , N. Now consider An,k, and to 
simplify the notation change the origin so that a = 0. Put Xi~x, 
x2 = 0, and let x approach zero. Then all the terms in the sum (2) 
for An,k except the first two approach limits, and the first two 
may be written : 

f(x) - /(O) 1 

x (x — xs) • • • (x — xn+i) 

f(0\ 

+ 
mr_ i i 

L(X — XB) • • • (X — Xn+i) ( — Xs) • • • ( — # n + i ) J 

As the second of these approaches a limit for x approaching zero, 
and the product does, we have shown the existence of 

ƒ(*) - /(0) 
(13) /'(0) = lim — — • 

x 
We now define a continuous function v(x) by the equations 

(14) f{x) =f(0) + xv(x), (^0), 

(15) viO) - / ' ( O ) . 

If we calculate Antk by (3), for xw+i = 0, and make use of (14), 
we find, after reduction, 

/y.n— 1 /y .n—2 . . . /y . 1 
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As this has the same form as (3), with ƒ (x) replaced by z/(x), and 
n by n — 1, by the basis of our induction, it follows that 

(17) lim N\AN+1,k = v<*>(0), 

and that v{N)(x) exists in some neighborhood of a = 0, and is 
continuous at this point. The derivatives of v(x) of lower order 
have this same property. 

By differentiating (14), we find 

(18) fn)(x) = xv<n)(x) + nv(n~l\x). 

This is in the first instance only established for x^Q, but fol
lows for x = 0 from the continuity* of the derivatives of v(x), 
which shows that for n^N, ƒ(w)(0) exists and is given by 

(19) ƒ<»>(()) = m ^ - ^ O ) . 

Thus 

(20) = v(N)(x) + N > 
X X 

and on letting x approach zero, we show the existence of 

(21) ƒ<*+« (0) = (N + 1 )^(0) . 

Comparison with (17) shows that 

(22) lim (N + l)\AN+ltk = /w+«(0) 

for the special approach used, and hence for any approach since 
the limit is assumed to be unique. In particular, if we first let 
the (iV+1) points of Sk coalesce at Xi near a = 0, and then re
maining coincident with Xi approach a = 0, we shall have 

/(tf+i) (0) = lmjf<*+1>(*i), 

since the point Xi may be taken as the 0 in (22), when sufficiently 
near a for the limit to exist. This establishes the continuity of 
f(N+U(x) at 0, and so proves the sufficiency of the condition. 

4. Taylor Developments. If a function has an nth derivative 
at a point , / ( n ) (a) , and we form its Taylor development 

* de la Vallée-Poussin, loc. cit., p. 127, number 5. 
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f(a+h) = f(a) + —ƒ'(«*) + • •• 
(23) 
v h*"1 hn 

+ —J{n~x\a) + — M(h) ; 
(n — 1)! w! 

then, as shown by W. H. Young,* 
(24) lim Jf(A) = fn)(a). 

We may have a development of this form 

(25) f(a+ h) =Ao + ~A1+ • • • + —An-1 + —M(h), 
1 (» — 1)1 n\ 

with 

(26) UmM(h) = Jf(0), 

without ƒ (x) having an nth derivative atx==a. 
In fact, such a development implies nothing as to the de

rivatives of ƒ (x) beyond the fact that f (a) = Ai. This is shown 
by the following example : 

f(x) = xn+l sin ar*^1, » ^ 0, jf(0) = 0. 

There is a development about the origin, of the form (25), with 

Ax = A2 = • • • = Af(0) = 0, Af(A) = »!A sin A"*"1. 

However f (x) is discontinuous at 0, so that there is no second 
derivative. 

We give a condition for a development of type (25) in the 
following theorem. 

THEOREM 2. The existence of the limit Antkfor all sets of points 
closing down to a in such a way that a bound K exists such that 

(27) | %f - a | ^ K | Xj - Xi | , (iy£ j), 

is a necessary and sufficient condition for f(x) to have a Taylor 
development of the nth order about the point a. 

* W. H. Young, The Fundamental Theorems of the Differential Calculus, 
Cambridge Tract, No. 10 (1910), p. 16; see de la Vallée Poussin, loc. cit., p. 77. 
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I t may be noted that the condition (27) prevents the points 
from having mutual distances small compared with their dis
tances from a. In particular, two points can not coalesce unless 
they both coincide with a. 

To prove the necessity, we simplify the notation by taking 
a = 0, so that our assumed development is 

(28) ƒ(*) =A0 + ^-A1+ • • • + /
 %n ^ An^ + —M{x). 

1 (n — 1)! n\ 

Now calculate An,h by using (3) and (28) for the functions 
f(xj) in the numerator. The result is 

n\An,k = I s»"^*/).*/-1» • • •»* ' . M = M ( o ) 
[ /y „w -v .n—1 . . . /v . 1 

?+} %f[M(%i) - M(0)] 

j=sl \Xj Xi) ' ' ' \Xj Xj—i)\Xj Xj+i) ' ' ' \Xj-—Xn+i) 

From (27) we have \XJ\ ^K\xj — Xi\, ( i ^ i ) , so that each term 
in the summation of (29) is dominated by Kn\ M(xj) — M(0)\ 
and approaches zero when M(XJ)—>M(0). If any point x3- reaches 
a = 0, the corresponding term does not appear in the summation. 
Thus, if there is a development (28), when (27) holds, 

(30) l im»U n , * = M(0). 

For the sufficiency, we use the reasoning previously given to 
establish (13), which is valid since the conditions there used are 
compatible with (27). We define v(x) by (14) and (IS), and con
sider (16). Now use mathematical induction. For » = 1, the ex
istence of a derivative implies the existence of a development 
(28). Assume the theorem holds for n — 1, 2, • • • , N— 1. Then 
from this, applied to v(x), we have 

( 3 1 ) ^ J^_ = v(x)==Bo + BlX+ . . . + —B(x), 
x (N - 1)! 

and from this 

(32) /(*) = /(O) + Box + B!X2 H h NB(x), 

which proves the result for n = N, completing the induction. 
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COROLLARY. If the f unction f {x) has an nth derivative at a, then 
as Sk closes down to a, subject to (27), 

(33) lim n\An,k = fn(a). 

For, under the hypothesis, there is a development given by (23) 
and (24), and the result follows from (30). 

5. Contact. The order of contact of two curves is usually 
stated in terms of derivatives. However, as the derivatives are 
merely used to get the Taylor development, if we have a Taylor 
development at hand it may be used to define order of contact. 
Thus, the example previously mentioned, 

(34) y = xn+l sin x~n~l, x 9e 0; y = 0, x = 0, 

is a curve having contact of the ^th order with the x axis at the 
origin. 

Similarly, certain other geometric concepts may be reduced 
to that of contact. Thus, in this sense, the curve 

1 
(35) y = 2kx2 + #3 sin — 

x 
has curvature k a t the origin. That is, it has second order con
tact with a circle of radius 1/k, the circle of curvature. There 
is no second derivative at the origin. However, by Theorem 2, 
if a circle is passed through three points on the curve, which 
close down to the origin subject to the condition (27), it will 
approach the circle of curvature. 

In a space where distances, rather than coordinates, are 
given, it would be natural to replace (27) by a similar condition 
on the distances. This would lead to an intrinsic definition of 
curvature more general than that of Menger,* based on the 
expression for the radius of the circle through the three points, 
allowed to close down without restriction. 

6. Condition for an nth Derivative. We shall now discuss a 
condition for the mere existence of a derivative. 

THEOREM 3. The existence of a unique limit for An,k as one of 
the points of Sk remains at a, while the rest close down on a, is a 
necessary and sufficient condition for the existence of an nth de
rivative, f(n) (a). 

* Karl Menger, Mathematische Annalen, vol. 103 (1930), p. 480. 
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With the restriction stated, by the reasoning previously 
used for (13) and (16), we see that an alternative statement 
of the condition for the existence of/ ( n )(a) can be given in terms 
of the existence and continuity of z;(n-1)(a), where 

M < \ f(x) ~ / ( 0 ) 

(36) v(x) = 
x 

That the continuity of z/(n-1)(a) insures the existence of f(n)(x) 
follows from (18) and from (20) with N = n — 1. 

To show the converse, we note that v(0) =ƒ'(()), and assume 
that if/ ( n + 1 )(0) exists, 

ƒ<"+!>(()) 
(37) V M ( 0 ) = J _ ± L , 

n + 1 
as the basis of an induction. We deduce from (36) that 

(38) J J
 r 

+ ( - l)nn\[f(x) - f(0)]x~n-K 

Thus 

vin)(x) — z;(n)(0) f(n)(x)xn — nf(n~l)(x)xn~l 

+ • 
( - l)nn\[f(x) - /(O)] - *»+1/<"+1>(0)/(» + 1) 

By L'Hospital's rule, the application of which telescopes the 
terms, this will approach a limit if 

fn+»(x)xn - fn+v(0)xn f<-n+l)(x) - /<W+1>(0) 

(n + 2)xw+1 "" (n + 2)x 

does. As the latter expression approaches f(n+2)(0)/(n + 2), if 
this derivative exists, we see that in this case 

/(n+2)(0) 
(40) , ( n + l ) ( 0 ) = y — - A ' 

(» + 2) 
which completes our induction. 

This proves that if/ ( n + 1 )(0) exists, z/(w)(0) exists. In this case, 
in some neighborhood of 0, fin)(x) exists and is continuous. Thus, 
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from (38), v(n)(x) exists, and is continuous except perhaps at 
x — 0. To settle this point, we write 

v^(x) - v<n)(0) = f^(x)x~1 - / ^ ( O ) x - 1 + / ^ ( O ) * - 1 

(41) - nf<n-»(x)x-2 + • • • + ( - \)nn\[f(x) - f(0)]x~n-1 

- fn+1)(0)/(n+ 1). 

The limit of the first two terms is / ( n + 1 ) (0) . The remaining terms 
may be written with denominator xn+1, and their limit found 
by L'Hospital's rule as for (39). Here we find the limit is that of 

nf^^x"-1 - nfn)(x)xn~1 — fn+1)(0)xn 

(n + l)xn 

which is 

l i m r _ ^ / M M - / M ( 0 ) _ / ^ ( 0 ) l , _ 

L n+1 x » + l J 

Thus, from (41), 

lim [»<»>(*) - »f»)(0)] = 0, 

and the continuity of p(n)(#) for x = 0 is established. This com
pletes the proof of Theorem 2. 

As a simple example of the theorem, we have the function 

1 
f(x) = #4 sin — ; x 9^ 0, /(O) = 0, 

X 

which has a second derivative, discontinuous for x = Q. The 
corresponding v(x) is 

1 
v(x) = #3 sin —; x 7* 0, p(O) = 0, 

which has a continuous first derivative. 
We formulate in the following corollary the alternative con

dition used above. 

COROLLARY. A necessary and sufficient condition for the exist
ence of an nth derivative, / ( n ) (a) , is the existence of an (n—l)th de
rivative, z;(n-1)(x), continuous in some neighborhood of a, where 
v(x) is related to f(x) by (36). 
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