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ON APPROXIMATION BY POLYNOMIALS TO A
FUNCTION ANALYTIC IN A SIMPLY
CONNECTED REGION*

BY O. J. FARRELL

In a previous papert the writer studied expansions in series
of polynomials of a function f(z) analytic in a limited simply
connected region G where f(2) is known either to be bounded
in G or such that the double integral over G of the pth power
(p>0) of the modulus of f(z) exists.] The present note contains
an extension of each of the two theorems obtained in the earlier
paper. The extended theorems now read as follows.

THEOREM A. Let G be a limited simply connected region of the
2z plane. Then in order that corresponding to every function f(z)
analytic and bounded in G there shall exist a sequence of poly-
nomials { p,,(z)} which converge to f(2) in G as n—© and at
the same time such that

(1)  Tm [| pa(@)], 2in G] < bound [| f(2)], 2 in G],

Nn—> 0
it is necessary and sufficient that the boundary of G be also the
boundary of an infinite region.

THEOREM B. In the 2 plane let G be a limited simply connected
region whose boundary is also the boundary of an infinite region.
Let f(2) be analytic in G and such that

(2) f fG'f(Z) "as, (>0,

exists. Then there exists a sequence of polynomials { p,,(z)} such
that

* Presented to the Society, September 4, 1934.

t This Bulletin, vol. 40 (1934), pp. 908-914.

i The writer is indebted to Professor J. L. Walsh for having suggested a
study of these two problems and also to Professor Torsten Carleman for send-
ing a reprint of his paper on approximation to analytic functions by linear ag-
gregates of prescribed powers (Arkiv for Matematik, Astronomi och Fysik,
vol. 17 (1923), pp. 1-30).
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3) tim [ [ |1 = pute)'as = .
Nn—> 0

It will be noticed that in the first of these theorems we no
longer say that there exist polynomials { pa(2) } which converge
to f(z) continuously in G, but merely that there exist poly-
nomials {pn(z)} which converge to f(z) in G. For if polynomials
{pn(2)} converge to f(z) in G so that (1) holds, these poly-
nomials are uniformly bounded in G and thus form in G a normal
family of analytic functions from which can be chosen a sub-
sequence converging to f(z) continuously in G. Hence, whenever
there exists a sequence { p,,(2) } converging to f(z) in G so that (1)
holds, there exists also a sequence which fulfills (1) and con-
verges to f(2) continuously in G. It will be seen too that in the
second theorem we no longer say that there exist polynomials
{ Pa(2) } which converge to f(2) continuously in G and for which
(3) holds, but merely that there exist polynomials {p,(z)} for
which (3) holds. This is because we have since found in the
literature a lemma by Walsh* giving assurance that if (3) holds,
the polynomials { pn(z)} do converge to f(z) continuously in G,
so that specific mention of the convergence may be omitted.

The proof of Theorems A and B requires only a slight modifi-
cation of the proof of the two corresponding theorems in the
previous paper. This modification is brought about by observing
that if G is any limited simply connected region whose boundary
also bounds an infinite region, then there exists a sequence of
regions {G,,}, each of which is a Jordan region lying interior to
its predecessor and which are all such that the sequence {G,}
converges to G as kernel.t If we use such a sequence of regions
{G,.}, the proofs of Theorems 1 and 2 of the previous paper
apply to Theorems A and B, respectively, of the present note.
It is to be remarked, however, that uniform approximation to
fa(2) or F,(z) in G by a polynomial with arbitrarily small error
does not now follow directly from the theorem of Walsh that was

* Transactions of this Society, vol. 33 (1931), pp. 370-388, Lemma on p.
387.

t Compare Carathéodory, Mathematische Annalen, vol. 72 (1912), pp.
107-144, Chapter 3; or Walsh, Transactions of this Society, vol. 32 (1930),
pp. 335-390, proof of Theorem X.
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used before, but does follow indirectly from it, since f,(z) or
F,(2), being analytic in the closed Jordan region G,.1, can be
uniformly approximated with arbitrarily small error in G, by
a polynomial, and hence can be so approximated in G. In-
deed, Runge’s classical theorem on polynomial approximation
could be applied here and for that matter could have been used
in the previous paper. For the closed region G is interior to every
region G, and hence the function f,(2) or F,(2) can be approxi-
mated as closely as desired in G by a polynomial in z.

The proof of Theorem B and the proof of the sufficiency of the
condition of Theorem A are the same from this point on as for
the corresponding theorems in the earlier paper. And the proof
of the necessity of the condition of Theorem A is also contained
there in §5 as “A Remark on Theorem 1.”

The writer hopes in a forthcoming paper to be able to deter-
mine the most general type of limited simply connected region
to which Theorem B can be extended. That this theorem does not
hold for an arbitrary finite simply connected region is shown by
the following simple example.

Let G be taken as the region bounded by the two circles
|z| =a, |z| =b, b>a, and by the line segment ¢ £3=5b. Let
f(2) =1/z. Denote by Q the doubly connected region bounded
by the two circles. If now there existed a positive number p
together with a sequence of polynomials {p.(z)} such that

lim ff | pu(z) — 1/2]"dS = 0,
n— G

it would follow that

@) lim ff | pu(z) — 1/2]%dS = 0.
n— 0 Q

Consequently the polynomials {p,(z) } would converge* to 1/z

in Q and the convergence would be uniform on any closed point

set lying in Q, say on a circle |z| =¢, a <c<b. Hence, the poly-

nomials {p.(z)} would converge uniformly on and within the

circle | z| =c¢ to a limit function analytic within this circle. But

* This convergence would follow by the lemma of Walsh to which reference

was made above in the paragraph immediately following the statement of
Theorem B.
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such a function could not be equal to 1/z in the ring region be-
tween the circles |z| =a and |z| =c.

The main feature of this example is the use of the lemma of
Walsh whereby we know that if in a finite region R we have a
sequence of polynomials {,(z)} for which

tm [ [ o0 -fwls=o, >0,
where f(2) is a given function analytic in R, then the polynomials
{ pn(2) } converge to f(z) continuously in R. The converse is not
always true, as was shown by an example in §4 of our previous
paper. There is, however, a qualified form of converse which
does hold for an arbitrary limited region and for an arbitrary
function analytic therein. We may state this result as follows.

THEOREM C. Let R be a limited region of the z plane, and let
f(2) be analytic in R and such that

[ a1, (»>0),

exists. If polynomials {p,(z) } exist which converge to f(z) continu-
ously in R and for which

tm [l las = [ ] 1o,

lim ffR,f(z) — @) |%dS = 0.

n—

then

The proof of this theorem is already contained in the latter
part of the proof of Theorem 2 in our previous paper.

We close this note with a result closely connected with
Theorem A.

THEOREM D. Let G denote a limited simply connected region
whose boundary does not bound an infinite region. Let B denote
the boundary of the infinite region among the regions into which
the closed region G separates the plane, and let T' denote the region
(also simply connected) consisting of all the points which can be
joined to an arbitrary fixed point of G by a Jordan arc containing
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no point of B. Let f(2) be analytic and bounded in G. A necessary
and sufficient condition for the existence of polynomials {p.(z)}
which converge to f(z) in G so that (1) holds is that there exist o
Sfunction analytic and bounded in T’ and equal to f(2) in G.

The proof of this theorem is much the same as for Theorem
A taken together with the remark of §5 in the earlier paper and
is therefore omitted.

The conclusion of Theorem D simply means of course that
f(z) shall be analytically extensible throughout T.

UnioN COLLEGE

A GENERALIZED PARSEVAL’S RELATION
BY E. S. QUADE

A function ¢(x) which is non-negative, convex, and satisfies
the conditions ¢(0) =0 and (¢(x)/x)— as x— o will be called
a Young's function. Given such a function ¢(x), a second func-
tion, Y(x), with the same properties can be found such that
Young’'sinequality, ab <¢(a) +¢(b), holds for every a, b =0. The
functions ¢(x) and Y (x) are then said to be complementary in
the sense of Young.{

If x(¢) is such that [ :d)([ x| )dt exists, x(t) is said to belong to
the space Ly(a, b). This space is not necessarily linear.} For
this reason we denote by Lg*(a, b) the class of all functions x(f),
a<t=<b, such that the product x(¢)y(¢) is integrable for every

y(t)eLy(a, b). If we put
b
f x(t)y(t)dt\

o= [ Wi,

then Lg* is a linear metric, and complete space.§ A function

[[#l[s = sup
v

for all y(¢) with

t W. H. Young, Proceedings Royal Society, (A), vol. 87 (1912), pp. 225—
229.

1 W. Orlicz, Uber eine gewisse Klasse von Riumen vom Typus B, Bulletin,
Académie Polonaise, (A), Cracovie (1932).
§ A. Zygmund, Trigonometrical Series, 1935, pp. 95-100.



