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T H E H I L B E R T SPACE POSTULATES— 
A F U R T H E R REDUCTION 

BY A. E. TAYLOR 

In a recent issue of this Bulletin the writer gave a set of 
postulates for abstract Hubert space in which equality was 
treated postulationally. The result there obtained was a set of 
eleven postulates, independent among themselves, defining a 
linear vector space of a special sort. Three more postulates were 
then added, to define a Hubert space.* As a result of investiga
tions carried on by I. E. Highberg and myself concerning postu
late systems for general vector spaces,! it is now possible to 
make a further simplification of the Hubert space postulates. 
The equality relation as an undefined idea of the system is not 
independent, and may be defined in terms of the other notions 
in the system. When this is done the number of postulates is re
duced by three. The postulate system for Hubert space is then 
the following, where A denotes either the complex number sys
tem C, or the real number system R. 

1. The class K contains at least one element. 
2. If x, y eK, then x+y eK. 
3. IfaeA and x e K, then axeK. 
4. If x} y e K, then (x, y) e A. 
5. If x, yj zeK, then (x+y, z) = (x, z) + (y, z). 
6. If x, y eK, then (x, y) = (y, x). 
7. If aeA and x, y eK, then (a-x, y) = a(xy y). 
8. IfxeK,then{x,x)^0. 
9. For each integer n>0 there exist elements Xi, • • • , xn e K 

such that (ai-Xi+a2-X2+ • • • +an-xn, ai-xi+ • • • + a n - ^ n ) = 0 
if and only if a\ = a^ — • • • = an = 0. 

10. K is separable according to the norm ^== \\x . 
11. K is complete according to the norm u' = \\X\\. 

DEFINITION. If x, yeK, we say that x is equal to y and write 
x=y if and only if (xH—1 -y, x-\—1 -y) = 0 . 

* A. E. Taylor, this Bulletin, vol. 41 (1935), pp. 439-448. 
t A. E. Taylor and I. E. Highberg, On postulate systems for normed vector 

spaces. 
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In order to prove that these postulates do define a Hubert 
space we must establish the following propositions, which were 
postulates in the original set. 

I. If x, y e K, and if for each u e K, (x-\— 1 -y)+u = u, then 
x = y. 

I I . If x eK and (x, x) = 0, then x+y=y for each y eK. 
I I I . If x, y, ueK and x = y , then (x, u) = (y, u). 
PROOF OF I. Let 

(((* + - 1 -y) + u) + - 1 .*, ((x + - 1 -y) + u) + - 1 • *) = 0. 

Then, since u is arbitrary, we may replace it by Ou. On ex
panding, with the aid of postulates 5, 6, 7, we easily find that 
(xH—1 -y, xH—1-y) = 0 , or x = y. 

PROOF OF II . Let (x, x ) = 0 . Then, just as in the previous 
proof, we obtain the equation 

((* + ?) + - l-y, (* + y) + - l-y) = 0. 
This means, by definition, x + y =y . 

PROOF OF I I I . Let (xH—l-y , x-\—l-y)=0, and let u be an 
arbitrary element of K. Then (x, u) — (y, u) = (xH— 1 • y, u). But 
by the Schwarz inequality, which does not depend for its proof 
on the use of proposition III , we have 

0 ^ | (x + - 1 • y, u) | ^ (x + - 1 • y, x + - 1 • y ) 1 / 2 0 , ^ ) 1 / 2 = 0. 

Therefore (x, u) = (y, w). 
Postulates 1-8 are independent among themselves, as is 

proved by the examples given in the previous paper. The inde
pendence of the set taken as a whole is an open question. 
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