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ON T H E BERNOULLI DISTRIBUTION* 

BY SOLOMON KULLBACK 

1. Introduction. The Bernoulli or binomial distribution, of 
central importance in the theory of mathematical probability 
and statistics, has been the subject of considerable study. The 
derivation of the moments, or recursion formulas for the mo
ments, of this distribution, as usually presented, involve the 
use of moment-generating or characteristic functions, or the ex
plicit form of the distribution itself, f In the following we will 
derive these moments in an elementary manner and extend the 
results to the Poisson exponential distribution, distributions of 
the Lexis and Poisson types, and the multinomial distribution. 

2. Preliminary Notions. We need and use the following as
sumption, definitions, and theorem. 

EMPIRICAL ASSUMPTION. If an event which can happen in two 
different ways be repeated a great number of times under the 
same essential conditions, the ratio of the number of times that 
it happens in one way, to the total number of trials, will ap
proach a definite limit, as the latter number increases indefi
nitely. J 

DEFINITION. The limit described in the empirical assumption 
shall be called the probability that the event shall happen in 
the first way under those conditions.! We shall express the fact 

* Presented to the Society, November 30, 1934. 
t See, for example, A. Fisher, The Mathematical Theory of Probabilities, 

2d éd., p. 104 ff.; H. L. Rietz, Mathematical Statistics, 1927, p. 26 ff.; V. Mises, 
Wahrscheinlichkeitsrechnungy 1931, pp. 131-133; Risser and Traynard, Les 
Principes de la Statistique Mathématique, 1933, pp. 39-40 and 320-321; V. 
Romanovsky, Note on the moments of the binomial (q+p)n about its mean, 
Biometrika, vol. 15 (1923), pp. 410-412; A. T. Craig, Note on the moments of a 
Bernoulli distribution, this Bulletin, vol. 40 (1934), pp. 262-264; A. R. Cra-
thorne, Moments de la binomiale par rapport à Vorigine, Comptes Rendus, vol. 
198 (1934), p. 1202; A. A. Krisknasuami Aygangar, Note on the recurrence 
formulae for the moments of the point binomial, Biometrika, vol. 26 (1934), pp. 
262-264. 

% J. L. Coolidge, An Introduction to Mathematical Probability, 1925, p. 4. 
§ J. L. Coolidge, op. cit., p. 4. 
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that the relative frequency f/s (the ratio of the number of times 
the event happens in one way to the total number of trials) 
is assumed to have the probability p as a limit when s—> °o, in 
abbreviated form by writing E(f/s)=p, where E(f/s) is read 
"expected value of f/s.n* 

THEOREM OF COMPOUND PROBABILITY. If a compound event 
consists in the conjunction of any number of independent 
events, the probability of the compound event is the product 
of the probabilities for the individual events, f 

3. Bernoulli Distribution. Suppose that in n independent 
trials we observe an event to occur x times. Then, applying 
the notions of §2, we have 

( x\ / x(x—1)\ 

-)=P> E(-p—- W , • • • , n/ \n{n—\)/ 
/x(x-l) • • • (x-r+l)\ 

E\n—Ü—/—ZÏÏ) ^ '"> 
\n(n—±) - - - (n — r+1)/ 

( n—x\ /(n — x)(n—x+l)\ 
) = q' E( u ) = ? 2 ' • • • ' 

n / \ n(n—Y) / 
( n — x)(n—x— 1) • • • (n—x—r+1) \ 

E\ / — 7 \ — 7 — Z T ; ) =(?r> 
\ n(n—l) • • • (n—r+1) / 
/x(x—\) • • • (x—r+l)(n—x)(n—x—l) • • • (n—x—s-{-l)\ 
\ » ( » - l ) ( » - 2 ) • • • (n-r-s+1) J 

for r+s^n. Each fraction in (1) represents the ratio of observed 
r-plets to the total possible number of such r-plets. We may also 
write (1) as 

(2) {E(x/n)}r {£((» - x)/n)}8 = £( [*] ' [» ~ * ] 7 W ^ ) ) 

where [x] ris the factorial f unction % x(x — l)(x — 2) • • • (x —r + 1) 

* H. L. Rietz, op. cit., p . 9. 
t J . L. Coolidge, op. cit., p . 18. 
% Whi t takerand Robinson, The Calculus of Observations, 1924, p . 8. See also 

J. F . Steffensen, Factorial moments and discontinuous frequency functions, 
Skandinavisk Aktuarietidsskrift, vol. 6 (1923), pp. 73-89. 
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and [E(x/n)Y is the rth power of the expected value of x/n, 
and r+s^n. 

In order to find the expected value of the rih power of the 
variable (or the rih moment about the origin), we avail our
selves of the fact that 

(3) xr = a r , 0 [x ] r + a r_i,i[^] r + • • • + ao.r, 

where a»-,,-, ( i , i = 0, 1, 2, • • • ), is the element in the ith row and 
jth column of the table* 
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in which a*\y = iaf,/_i+0i-i,/, a0,/ = 0, (j = 0, 1, • • • ), a»-fo = li 
( i = l , 2 , • • • ) • We thus have 

[n] , , r [n] , , r_i 

(4) ^ r ^r~1 

+ • • • + ai, r_iE(x), 

or 

(5) E(xr) = ar,0[n]rpr + a r - i . i M ^ V " 1 + • • • + ai%T-inp. 

For the expected value of the rth power of the deviations of x 
from its expected value (or the rth moment about the expected 
value), we have 

r 

(6) E{(x - £(*)) '} = 2 ( - D ' C r . ^ * - ' ) {£ (* )} ' , 

in which we replace £(x r) by its value as given in (5). This 
yields 

* Whittaker and Robinson, op. cit., p. 9. 
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(7) E{(x - £(*)) '} = Brf* + Br^r~l + • • • + Bxp, 

where 
r 

Br=Y,(- l ) 'C r . 4a^. 0n'[»]*" ' , 
»-o 

1 = 0 

4. Poisson Exponential Distribution. The moments of the 
Poisson exponential distribution are derived from those of 
the Bernoulli distribution by letting n—»<*> with \imn^E(x) 
= limn^o0np = my where m is finite. Accordingly, we have from 
(4) and (7), respectively, 

(8) E(xr) = ar,onir + ar-i,im
r~l + • • • + ai,r_iw, 

(9) E[(x - E(x))r} = Arm
r + A^m^1 + • • - + Am, 

where 
r r—j—X 

A.r = / ^ ^ 1) L/r,iQ'r—i,0 > ^r—j := / ; \ 1 ) \^r,i^r— j— i , j • 
t = 0 «'—0 

5. Lexis Type Distribution.* Consider N independent sets of 
n independent trials each, with the probability for the occur
rence of an event constant for a set, but varying from set to set. 
Let the varying probability be pu P2, • • • , PN, and the number 
of occurrences observed, respectively, 

Then, in a manner similar to that of §3, we have 

(10) £ Ü * ] W / M r ) = ^ i > , where [xf = ± £ [*,]'. 

If we set £ ( r ) =^y^sslpir/N1 we have, corresponding to (5), 

+ a1>r-xnpa), 

where x^^^^xf/N, and corresponding to (7), 

(12) E[(x<» - E(xW))'} = Brp™ + Br-ipt*-»-\ + B^lK 

Sincef 

* H. L. Rietz, op. cit., Chap. 6. 
t Chrystal, Textbook of Algebra, 2nd éd., vol. 2, p. 49. 
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1 N / 1 N V 

N t-.i \N <_i / 

we see, by comparing (5) and (11), that 

(13) EL(*') ^ £*(* ') , 

where E L represents the expected value from a Lexis type dis
tribution and EB the corresponding expected value from a 
Bernoulli distribution with p = ^ff^pi/N. Indeed EL {(x+a)r} 
^EB{(x+a)r} for a ^ O . 

6. Poisson Type Distribution* Consider a set of n inde
pendent trials with the probability for the occurrence of 
an event varying from trial to trial. Let these probabilities be 
Ph P2, • ' m , pn> The study of the moments for this case is really 
the consideration of the moments for the distribution of the 
total of a Lexis type distribution of n independent sets of one 
trial each. Thus, if the number of observed occurrences of an 
event in x trials is x=xi+x%+ • • • +xn, where # t =zero or one, 
then 

(14) E(x) = £ E ( * < ) = è*<, 

(15) E(xr) = ai ]C Pi + <** H PiPi + ** Z) PiPiPh + • • • 

+ 0>r 2-j PiPi ' ' ' Pr, 

where ak
(r) =£r\/(si\s2\ • • • skl) for S i+s 2 + • • '+sk = r, s t ^ 0 , 

(i = l, 2, • • • , k). The right member of (15) follows from the 
fact that E(xir) =pi, as may be readily seen from (4) for n = l 
and r^ 2. 

For the moments about the expected value, we have 

(16) E{(x - £(*)) '} = E ( - l ) * C r t < £ ( ^ 0 {£(*)} ' , 

where E(xr) is given by (15) and {E(x)}r=(p1+p2+ • • • +pn)\ 
If we repeat the preceding argument with constant probabil

ity p =^n
i=1pi/n, we find that 

(17) £(*<•) = ai^np + o&CnAp* + • • • + ar^Cn,rp
r. 

* H. L. Rietz, op. cit., Chap. 6. 
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Since* 

( 1 n y 
— IL Pi ) = YiiPiPi ' ' ' Pr, 
n i=i / 

we see by comparing (17) and (15) that 

(18) EB(%') à Ep(x'), 

where Ep represents the expected value from a Poisson type 
distribution and EB the corresponding expected value from a 
Bernoulli distribution with P^^Ln^pi/n. Indeed, £#{(#+&)*"} 
^EP{(x+a)r} for a ^ O . 

A comparison of (17) and (5) shows that 

(19) Cn,kdk = W dk,r-ky or ak = k\aic,r-k. 

7. The Multinomial Distribution, Consider a trial in which 
one of r mutually exclusive events may occur. Let the re
spective probabilities of occurrence be pi> pi, • • • , pr with 
P1+P2+ ' ' ' +pr = l. If in n independent trials there are ob
served #i, #2, • • * , xr occurrences, respectively, of the r events, 
then 

(20) E{ [Xl]
a[Xif •.. W / M * * * - - 4 * } = pj* •••>:. 

Thus, for example, E(xiXj) =n(n—l)pipj and E(xiX3) — E{xi)E{xj) 
= n(n — l)pipj — npiHpj= —npipj, 

Now we may write f 

i 

x\ = £ AW[xiY/\\, 
\=o 

where AX0Z are the differences of zero and 

1 
AM)1 = \ l - X(X - l)l + — X(X- 1 ) (X- 2)1- • • • ± X 1 ' . 

* This can be shown by using the fact that ƒ(xif #2, • • • , xn) =2-, 
X1X2 • • • Xf 

subject to the condition #i+#2+ * * * +#n = constant, has its maximum value 
for #1 = 3:2= • • • —xn. 

t J. F. Steffensen, Interpolation, 1927, p. 13, equation (3). 
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Accordingly, 

(21) 

and 

(22) 

k l m 
X\X2 * * * Xf 

' A«0*[*i]« ' Ax0'[x2]x « A»Om[xry 
~ Xu 2-j ' ' ' /Li > 

K=O K\ X-O X! M=0 fxl 

77/ k l m \ 

E{%i%2 • • 'Xr ) 

7 , K k X Z U m r -1K+X+' • «-f-U K X 

k.i.^.m A 0 -A 0 • • • A 0 [n] pip2 • • 
jc-.ofx-.o,...fM-o K!X! • • • /*! 

•fr 

= (1 + ^ A i + P2A2 H + pràrf -OiOg • • • 07, 

where A * 0 / = 1 for i^j and A*(V=A*0Z. The latter result is 
true for any n and k, / , • • • , m since [w]K+x+* , , + / i = 0 for 
K+A + • • • + / * > » and A«0r = 0 for a > r . 

The procedure with respect to the product moments about 
any constant is similar to that outlined. Thus, since* (#*•—a»V 
= Z x = o A x ( - ^ ) z k ] x A ! , we have 

(23) (xi — ai)k(x2 — a2)
1 • • • (#r — ^r)m 

* ' ^ , ' m A"( — ai)*Ax( —02)* * ' *A*( —ar)
w[tfi]"[tf2] • • • [xrf 

K = O , X = O , - - . , M = O AC!X! • • • / * ! 

and 

.Biol — ai)*(^2 — #2)* ' * * Or — dr)
m) 

(24) 
= (1 + ^Ai + #2A2 + • • • + pArY 

• ( - < * l ) * ( - flj)1' * • ( - ^ r ) M , 

where ai, a2, • • • , ar are any constants and A»-fc( —a,-)z = l for 
^ j a n d A i f c ( - a i ) * = A * ( - - a ; y . Sincef A = e D - l , w h e r e D=d/dx, 

* J. F. Steffensen, op. cit., p. 13. 
t Whittaker and Robinson, op. cit., p. 63. 
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E{(%I — ai)k(x2 — a2)
1 - - - (xr — ar)

m} 

[December, 

(25) 

= {pie + pie + 
Dr.n k l 

+ ^re ) • #i#2 

*i=—«i 

where Di = d/dxi. 

WASHINGTON, D. C. 

ON A RESULTANT CONNECTED WITH 
FERMAT'S LAST THEOREM 

BY EMMA LEHMER 

E. Wendt* seems to have been the first to introduce the re
sultant of xn = l and ( x + l ) n = l in connection with Fe rma i s 
Last Theorem. This resultant can be expressed by means of the 
following circulant of binomial coefficients 

1 ^ w , l ^w,2 ' ' ' ^n,n— 1 

, ^n,n—1 •*• ^ n , l * ' ' ^n,n-

Aw = 

Cw ,l Cw,2 CWf3 1 

In his book on Fermat's Last Theorem Bachmannf proved 
that if p is an odd prime and if Ap_i is not divisible by pz

} then 
Fermat's equation xp+yp+zp = 0 has no solution (x, y, z) prime 
to p. 

S. LubelskyJ proved in a recent paper, using the distribution 
of quadratic residues, that if p^7, Ap_i is not only divisible 
by pz

y but by ps, thus annulling Bachmann's criterion except for 
p = 3 and p = 5. 

We shall now show how, by a straightforward manipulation 
with the above determinant, one can prove much more. 

THEOREM 1. A ^ i is divisible by pv~%q^for every prime p, where 
g2 is the Fermât quotient (2p~x — l)/p. 

* Journal für Mathematik, vol. 113 (1894), pp. 335-347. 
t Das Fermatproblem, 1919, p. 59. 
% Prace Matematyczno-Fizyczne, vol. 42 (1935), pp, 11-44. 


