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A GENERALIZATION OF THE BERNOULLI
POLYNOMIAL OF ORDER ONE*

BY B. F. KIMBALL

1. Introduction. The idea of a Bernoulli polynomial, general-
ized so as to allow of a continuous variation of the index of its
degree, is not a new one.t In the present paper the writer has de-
veloped a simple definition of a generalized Bernoulli polynomial
of order one which brings the Bernoulli polynomial into direct
relationship with the generalized Riemann zeta-function. An-
other very interesting property of this generalization of the
Bernoulli polynomial is brought out in §7.

2. Difference Equation Considered. For the purposes of this
paper in dealing with a complex power s of a complex number
t, if t=re®, then fr=trtir =gtllog r+ifl (—q <0 <7). The following
difference equation will frequently be referred to:

1 [/ + w, 5) — flx, 5)] = sa*2,

1
w
where the difference interval w is taken real and positive. Also
there will be occasion to impose the asympiotic condition: for any
value of s such that R(s) <0,

(2) f(x,s) >0 as R(x)—> + .

There will also be occasion to refer to the following regions on
the x and s planes:

Region X. All points on the x plane other than the negative
axis of reals and the origin.

Region S. All points on the s plane within and on the bound-
ary of a circle of radius M centering at the origin, (usually
taken arbitrarily large, see §5).

3. Uniqueness of an Analytic Solution.

* Presented to the Society, June 23, 1933.
t See N. E. Norlund, Vorlesungen diber Differenzenrechnung, p. 53.
Future references to this book will be indicated by the letter N.
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LEMMA 1. Given a function of x and s which is defined for all
values of x on region X and which for any such value of x is analytic
in s over region S. Given also that this function is a solution of the
difference equation (1) for x in X and that it satisfies the asymp-
totic condition (2). Such a function is unique (the existence of
such a function is established in §5).

ProoF. Assuming the existence of two such functions fi (%, s),
we have

(3) ¢(x+u’,$)—t/’(x,5)=0, (ch;‘//Efl"fz)-

From (2) it follows that ¢¥(x, s) must be identically zero, xc X,
if R(s) <0. Let x, denote any value of x in region X. We have
then from the hypothesis of Lemma 1 that ¢/(x,, s) is an analytic
function of s over the region .S. Thus this analytic function must
be zero for all values of s in S, and the lemma follows.

4. Definition of a Generalized Bernoulli Polynomial. For s=a
positive integer or zero and x real, the classical Bernoulli poly-
nomial, Bs(x) =B,(x, 1), has been defined (N., p. 18) as the poly-
nomial solution of the difference equation (3), with difference
interval equal to unity, which takes on the value of the corre-
sponding Bernoulli number B, when x=0. Nérlund has termed
the polynomial above the “Bernoulli polynomial” (of order one),
with difference interval equal to one, and has defined Bernoulli
polynomials of positive and negative order # for all integral val-
ues of 7, where the difference interval w is not restricted to be
equal to unity (N., pp. 129, 138).

The author has found it of interest to set up a definition of
a generalized Bernoulli polynomial B,(x, w) of order one where
s and x are allowed to take on complex values. To avoid compli-
cations, w has been taken as real and positive.

DEFINITION. The solution of the difference equation (1) de-
scribed in the statement of Lemma 1 shall be considered as the
generalized Bernoulli polynomial B,(x, w) of order one for s in
region S.

5. Solution Based on Euler- Maclaurin Summation Formula. A
solution based upon the Euler-Maclaurin summation formula
will first be set up. We define a periodic function B,(f) as fol-
lows (N., p. 30). Let the variable ¢ be restricted to real values
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and denote by Bx(f) the classical Bernoulli polynomial of de-
gree m. The function B, (¢) is taken so that

4) Bu(t) = Ba(t), 0=t<1),

and B,(t+1) — Bn(t) =0 for all values of ¢. Let m be any positive
integer greater than a positive number M (radius of circular
region S). Define the function f(x, s) = F(x+hw, s) by the rela-
tion (see N., p. 52):

F(x + hw, s) = i WEBL(R)Cs 125"
k=0
O] ©
+ (m + l)w"‘“Cs,me Bu(k — 2)(x + wz)*—m1dz,
’ 0= h<1).

It is not difficult to verify the following statements concerning
this function for x in region X and s in region S.

(i) For any fixed value of x in region X, f(x, s) exists and is an
analytic function of s in S.

(ii) The function f(x, s) defined above is a solution of the differ-
ence equation (1).

This is easily verified as follows. Consider the infinite in-
tegral as a sum of an infinite series of integrals with limits at
0, w, 2w, - - - . Then take the difference of each side of the equa-
tion with respect to x with difference interval w. This reduces
the infinite series of integrals to one integral, and the expression
on the right is easily recognized to be the Euler-Maclaurin ex-
pansion of s(x-+hw)*~! in terms of its first differences.

(iii) For any value of s such that R(s) <0, f(x, s)—0 as
R(x)—4 0.

(iv) The function f(x, s) is the generalized Bernoulli polyno-
mial, B,(x, w), of order one for s in region S.

(v) If w=1 and s is a positive integer (or zero) less than M,
f(x, s) reduces to the classical Bernoulli polynomial.

(vi) The above region of definition S of B,(x, w) on the
s plane may be made as large as desired by giving to m a suffi-
ciently large value in equation (5). Thus we have here a proof
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of the existence of B,(x, w) and its analyticity with respect to s
over the finite s plane for x ¢ X.

(vii) Set =0 and x=w in (5). This brings out the relation
(N., p. 129)

(6) B, (w, w) = w*B,(1, 1) = w*B,(1).

6, Multiplication Equation Satisfied by* B,(x, w). The differ-
ence equation

hs(x + w/m) — h(x) = wsx*1, (xc X),

is satisfied by Z;:Bs(x+kw/n, w) and #n'*B,(nx, w). When
R(s) <0 the asymptotic value of each of these functions, as R(x)
becomes positively infinite, is zero. Thus, with the reasoning
employed in the proof of Lemma 1, it follows that

n—1

) n'=¢B,(nx, w) = kz By(x + kw/n, w), (xcX),
=0
for all valuest of s. In particular for n =2 and x =w/2, this gives
the relation
B,(w/2, w) = (2t* — 1)B,(w, w),
which taken in connection with (6), leads to
(8) By(w/2, w) = w*B,(1/2).

7. An Interesting Property of Bs(x, w). Define function ¢,(x) by
the relation:

9) ¢s(x) = By(w/2 — x, w) — e™*B,(w/2 + %, w).

Using the fact that B,(x, w) is a solution of the difference equa-
tion (3), one arrives at the conclusion that

(10) és(x + w) — ¢s(x) = 0, (xc X).

When s is a positive integer or zero, it follows from well known
properties of the classical Bernoulli polynomials that ¢,(x) is
identically zero for all x. Thus, (i) ¢s(x) is a periodic function

* See Thiruvenkatacharya, On some properties of the zeta function, Journal
of the Indian Mathematical Society, vol. 19 (1931), pp. 92-96.

t In §5 the existence of B.(x, w) and its analyticity with respect to s over
the finite s plane was proved.
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with period w for all values of s; (ii) when s is a positive integer
or zero, ¢s(x) is zero for all values of x; (iii) ¢,(0) is given by

¢:(0) = (1 — e™)B,(w/2, w) = (1 — e™*)w*B,(1/2).

These properties point to a significant role played by B,(1/2) in
the behavior® of B,(x, w).

8. A Closely Related Integral. Consider the integralf L(x, s).
w +1i00 T 2
(11) L(x,s) = — (x + z)*(—————-) dz,
2wt _io w cos w3/ w

(R(x) > 0).
We may write L(x+w, s) in the form

w w0 T 2
12) L(x+ w,s) = — (.4 z)“<—> dz.
278V w—ico w cos 73/ w

The integrand of these integrals is analytic as a function of 2
over the region bounded by the two lines R(z) =0 and R(z) =w
except for a pole at z=w/2. The residue of this pole is
s(x+w/2)*-1, Hence the integral taken around the rectangle
bounded by the two lines referred to above, and lines parallel
to the axis of reals at —7N and +:N (IV real and positive) comes
to ws(x+w/2)*~1. As I(3)—= «, the absolute value of the inte-
grand goes to zero like #*¢—°¢, {— oo, uniformly for 0= R(z) Sw
(c real and positive). It follows that if we let N— o, the contri-
butions to the circuit integral made over the above lines at
41N approach zero. Thus, from (11) and (12), we have

(13) L(x+ w,s) — L(x, s) = ws(x + w/2)*t, (R(x) > 0).

Moreover, this relation is valid for all complex values of s. Also
it is not difficult to show that for R(s) <0, L(x, s)—0 as
R(x)— . Upon applying the reasoning used in proving Lemma
1, it follows that L(x, s) is the unique solution of difference
equation (13) for x on the right half-plane which satisfies the
asymptotic condition (2). Hence, for x on the right half-plane,
L(x, s) is identical with the gemeralized Bernoulli polynomial
By(w/24+x, w).

* See N., p. 130.

t See N., p. 75.




1935.] GENERALIZED BERNOULLI POLYNOMIAL 899

9. Relation to the Generalized Riemann Zeta-Function. The
generalized Riemann zeta-function may be introduced by the
relation
18 w19 =Y —

%, 1—35)= —_—
ko (x4 B)—°
For R(x)>0, the definition of {(x, 1—s) as a function of s has
been extended to include the finite s plane and under such defini-
tion s{(x, 1 —s) is found to be an entire function of s.*

On the other hand, from the difference equation satisfied by
B,(x)=B,(x, 1), it follows that

(xc X, R(s) <0).

* 1 1
(15) E_O EFTT= RN [Bi(x + 7+ 1) — B(x)], (xcX).
If R(s) <0, it is known that B,(x+47r+4+1)—0 as r— o. Hence,
(16) ——l—B,(x) = i —1—; (xe X, R(s) < 0),
s ko (x+ k)=

(17) By(x) = — s¢(x,1 —5), (xc X, R(s) <0).

When R(x)>0, the functions on each side of this relation, con-
sidered as functions of s, are defined and analytic over the finite
s plane. Thus the above equation holds for all values of s, and
we can state the following theorem.

THEOREM. For R(x) >0 and for all values of s, the generalized
Bernoulli polynomial of order ome is related to the generalized
Riemann zeta-function by equation (17).

As far as the writer is aware, this is the first time that the
relation (17) has been set up for values of s other than integers.
The fact that it has been worth while to study the zeta-function
as a function of a complex variable, may, by reason of equation
(17), mean that the study of a generalized Bernoulli polynomial
will yield further interesting and worth while results. In passing
it is interesting to note that the relation (17) may serve to ex-
tend the domain of definition of {(x, s), for all values of s, to val-
ues of x over all of region X.

* See, for example, Whittaker and Watson, Modern Analysis, 3rd ed.,
Chap. 13.
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From the relation between the zeta-function and the general-
ized Bernoulli polynomial there emerge several interesting con-
sequences. From the well known functional relation for {(1, s)
it follows that

(18) sBiy(1) = 271 sin (s7/2)T'(2 — 5)B4(1)

for all values of s. Since B;(1/2) plays a central role in the gen-
eral behavior of the function B,(x, w), it is of interest to apply
the above relation to B,(1/2). From the multiplication equation
(6) when we set w=1, =2, x=1/2, we obtain

(19) By(1/2) = (2! — 1)B,(1),

which, when substituted in (18), gives

28—l 28 — 1
(20) Bi(1/2) = - [21_8 1:| I'(2 — s) sin (sw/2)B,(1/2).
This relation holds for all values of s.

If w were given other values than unity, a further extension
of the zeta-function would result from the relation (17). This
would mean that in the series definition of the zeta-function
(14) the denominators x+% would be replaced by numbers
x-+kw. Such a generalized zeta-function would be the solution
of the difference equation

1
(21) ;[f(x+w) S)_f(xys)]= - X, (ch),

analytic in s over the finite s plane (except for a pole at s =1)
which for R(s)>1 has its asymptotic value equal to zero for
R(x) positively infinite.

ArLBany, N. Y.



