ON SOME EXTREMAL PROPERTIES OF TRIGONOMETRIC POLYNOMIALS WITH REAL ROOTS

BY J. GERONIMUS

1. Introduction. L. Fejér [1],† O. Szász [2], [3], [4] and E. v. Egerváry [5] have found many interesting extremal properties of non-negative trigonometric polynomials. In particular, Szász [3] has found that for every non-negative trigonometric polynomial of order $\leqq n$ with real coefficients,
(1) $G_{n}(\theta)=1+R \sum_{k=1}^{n} \bar{\gamma}_{k} e^{i k \theta}, \quad\left(\gamma_{k}=\alpha_{k}+i \beta_{k} ; k=1,2, \cdots, n\right)$, the inequality

$$
\begin{equation*}
\left|\gamma_{k}\right| \leqq 2 \cos \frac{\pi}{\left[\frac{n}{k}\right]+2}, \quad(k=1,2, \cdots, n) \tag{2}
\end{equation*}
$$

is valid. \ddagger
The object of this note is to find the minimum of the modulus of the first coefficient γ_{n}, supposing that all roots of $G_{n}(\theta)$ are real. The first problem of this kind has been considered by Blumenthal [6]; we shall return in §4 to his problem and its generalization.
2. Equality of Roots of $G_{n}{ }^{*}(\theta)$ for Problem 1. Consider the following problem.

Problem 1. Find the minimum of the modulus of the first coefficient γ_{n} of a non-negative trigonometric polynomial

$$
G_{n}(\theta)=1+R \sum_{k=1}^{n} \bar{\gamma}_{k} e^{i k \theta}
$$

of order n with real roots.

[^0]In order to solve this problem we shall prove the following simple lemma.

Lemma 1. All roots of the polynomial $G_{n}^{*}(\theta)$ for which the minimum in Problem 1 is attained must be equal.

Consider a non-negative trigonometric polynomial \dagger

$$
\begin{equation*}
G_{n}(\theta)=4 \sin ^{2} \frac{\theta-\theta_{1}}{2} \sin ^{2} \frac{\theta-\theta_{2}}{2} F_{n-2}(\theta)=R \sum_{k=0}^{n} \bar{\gamma}_{k} e^{i k \theta}, \tag{3}
\end{equation*}
$$

where $F_{n-2}(\theta)$ is a non-negative trigonometric polynomial of order $n-2$ with real roots,

$$
\begin{equation*}
F_{n-2}(\theta)=R \sum_{k=0}^{n-2} \bar{\gamma}_{k}^{*} e^{i k \theta}=\sum_{k=0}^{n-2}\left|\gamma_{k}^{*}\right| \cos \left(k \theta-\alpha_{k}\right), \tag{4}
\end{equation*}
$$

where $\alpha_{k}=\arg \gamma_{k}^{*},(k=0,1,2, \cdots, n-2)$, and $\alpha_{0}=0$.
On putting $\alpha=\left(\theta_{1}+\theta_{2}\right) / 2, \delta=\left(\theta_{1}-\theta_{2}\right) / 2$, we see easily that

$$
\begin{align*}
\gamma_{0}= & \gamma_{0}^{*}\left(1+\frac{1}{2} \cos 2 \delta\right)-\left|\gamma_{1}^{*}\right| \cos \left(\alpha_{1}-\alpha\right) \cos \delta \tag{5}\\
& +\frac{1}{4}\left|\gamma_{2}^{*}\right| \cos \left(\alpha_{2}-2 \alpha\right) ; \quad\left|\gamma_{n}\right|=\frac{1}{4}\left|\gamma_{n-2}^{*}\right| .
\end{align*}
$$

We see that $\left|\gamma_{n}\right|$ does not depend on α, nor on δ; on the other hand γ_{0} is maximal for $\delta=0$ if $\cos \left(\alpha_{1}-\alpha\right) \leqq 0$, or for $\delta=\pi$ if $\cos \left(\alpha_{1}-\alpha\right) \geqq 0$. In both cases the minimal value of $\left|\gamma_{n}\right|$ under condition $\gamma_{0}=1$ corresponds to $\delta=0$ or $\delta=\pi$; therefore θ_{1} and θ_{2} coincide. \ddagger
3. Polynomials for which γ_{n} has Extremal Values. It follows from this lemma that $G_{n}^{*}(\theta)$ is

$$
\begin{equation*}
G_{n}^{*}(\theta)=C[1+\cos (\theta+\alpha)]^{n} \tag{6}
\end{equation*}
$$

α being an arbitrary real argument; it may be written thus:§

$$
\begin{equation*}
G_{n}^{*}(\theta)=\frac{C}{2^{n-1}}\left\{\frac{1}{2} C_{2 n, n}+\sum_{k=1}^{n} C_{2 n, n-k} \cos k(\theta+\alpha)\right\} \tag{7}
\end{equation*}
$$

[^1]For this polynomial we have

$$
\gamma_{0}=\frac{1}{2^{n}} C\left(C_{2 n, n}\right) ; \quad\left|\gamma_{n}\right|=\frac{1}{2^{n-1}} C
$$

whence we find the ratio

$$
\begin{equation*}
\frac{\left|\gamma_{n}\right|}{\gamma_{0}}=\frac{2}{C_{2 n, n}} \tag{8}
\end{equation*}
$$

We have proved the following theorem.
Theorem 1. If $G_{n}(\theta)$ is a non-negative trigonometric polynomial,

$$
G_{n}(\theta)=1+R \sum_{k=1}^{n} \bar{\gamma}_{k} e^{i k \theta},
$$

of order n with real roots, then

$$
\begin{equation*}
\frac{2}{C_{2 n, n}} \leqq\left|\gamma_{n}\right| \leqq 1 \tag{9}
\end{equation*}
$$

the maximum is attained for the polynomial \dagger

$$
\begin{equation*}
G_{\max }(\theta)=1+\cos n(\theta+\alpha), \tag{10}
\end{equation*}
$$

and the minimum for the polynomial

$$
\begin{equation*}
G_{\min }(\theta)=\frac{2^{n}}{C_{2 n, n}}\{1+\cos (\theta+\alpha)\}^{n} \tag{11}
\end{equation*}
$$

α being an arbitrary real argument.
4. The Generalized Extremal Problem. Consider now the following extremal problem.

Problem 2. Find the minimum of the ratio

$$
\begin{equation*}
\frac{A_{m}{ }^{2}+B_{m}{ }^{2}}{\lambda A_{0}{ }^{2}+\sum_{k=1}^{m}\left(A_{k}{ }^{2}+B_{k}{ }^{2}\right)} \tag{12}
\end{equation*}
$$

\dagger See [1], [2].
where
$g_{m}(\theta)=A_{0}+A_{1} \cos \theta+B_{1} \sin \theta+\cdots+A_{m} \cos m \theta+B_{m} \sin m \theta$
is a trigonometric polynomial of order m with real roots, and λ is an arbitrary non-negative number.

The above mentioned problem of Blumenthal [6] corresponds to $\lambda=1$. It is easy to see that for $\lambda=2$ Problem 2 is a particular case of the Problem 1. Indeed we see that

$$
\begin{equation*}
g_{m}^{2}(\theta)=G_{n}(\theta)=R \sum_{k=0}^{n} \bar{\gamma}_{k} e^{i k \theta} \tag{13}
\end{equation*}
$$

is a non-negative trigonometric polynomial of order $n=2 m$, while

$$
\begin{equation*}
\gamma_{0}=A_{0}{ }^{2}+\frac{1}{2} \sum_{k=1}^{m}\left(A_{k}^{2}+B_{k}^{2}\right), \quad\left|\gamma_{n}\right|=\frac{A_{m}^{2}+B_{m}^{2}}{2} \tag{14}
\end{equation*}
$$

therefore we have for $\lambda=2$

$$
\begin{equation*}
\frac{A_{m}^{2}+B_{m}^{2}}{2 A_{0}^{2}+\sum_{k=1}^{m}\left(A_{k}^{2}+B_{k}^{2}\right)} \geqq \frac{2}{C_{2 n, n}}=\frac{2}{C_{4 m, 2 m}} \tag{15}
\end{equation*}
$$

To solve our problem for all $\lambda \geqq 0$ we shall put it in the following form.

Problem 2'. Find the maximum of the expression

$$
\begin{align*}
L(G)=\frac{1}{2 \pi} \int_{0}^{2 \pi} G_{n}(\theta) d \theta+\epsilon\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[G_{n}(\theta)\right]^{1 / 2} d \theta\right\}^{2} & , \tag{16}\\
& (\epsilon \geqq-1),
\end{align*}
$$

where $G_{n}(\theta)$ is a non-negative trigonometric polynomial

$$
G_{n}(\theta)=R \sum_{k=0}^{n} \bar{\gamma}_{k} e^{i k \theta}, \quad\left(\left|\gamma_{n}\right|=1\right)
$$

of order $n=2 m$ with real roots.
5. Equality of Roots of $G_{n}^{*}(\theta)$ for Problem 2^{\prime}. We shall prove the following lemma.

Lemma 2. All roots of the polynomial $G_{n}{ }^{*}(\theta)$ for which the maximum in Problem 2' is attained must be equal.

Put

$$
\begin{align*}
{\left[G_{n}(\theta)\right]^{1 / 2} } & =2 \sin \frac{\theta-\theta_{1}}{2} \sin \frac{\theta-\theta_{2}}{2} F_{m-1}(\theta) \tag{17}\\
& =[\cos \delta-\cos (\theta-\alpha)] F_{m-1}(\theta)
\end{align*}
$$

where $\alpha=\left(\theta_{1}+\theta_{2}\right) / 2, \delta=\left(\theta_{1}-\theta_{2}\right) / 2$, and $F_{m-1}(\theta)$ is a non-negative trigonometric polynomial of order $m-1$,

$$
\begin{equation*}
F_{m-1}(\theta)=R \sum_{k=0}^{m-1} \bar{c}_{k} e^{i k \theta} \tag{18}
\end{equation*}
$$

with real roots. Thus we get
(19) $\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[G_{n}(\theta)\right]^{1 / 2} d \theta=c_{0} \cos \delta-\frac{1}{2}\left|c_{1}\right| \cos \left(\beta_{1}-\alpha\right)$,
where $\beta_{k}=\arg c_{k},(k=0,1, \cdots, m-1)$, and $\beta_{0}=0$. Further let

$$
\begin{equation*}
F_{m-1}^{2}(\theta)=R \sum_{k=0}^{2 m-2} \bar{c}_{k}^{*} e^{i k \theta} ; \tag{20}
\end{equation*}
$$

then we obtain

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} G_{n}(\theta) d \theta=c_{0}^{*}\left(1+\frac{1}{2} \cos 2 \delta\right) \tag{21}\\
& \quad-\left|c_{1}^{*}\right| \cos \left(\beta_{1}^{*}-\alpha\right) \cos \delta+\frac{1}{4}\left|c_{2}^{*}\right| \cos \left(\beta_{2}^{*}-2 \alpha\right)
\end{align*}
$$

where $\beta_{k}^{*}=\arg c_{k}^{*},(k=0,1, \cdots, 2 m-2)$, and $\beta_{0}{ }^{*}=0$. Using (19) and (21) we have

$$
\begin{equation*}
L(G)=A \cos 2 \delta+B \cos \delta+C \tag{22}
\end{equation*}
$$

where

$$
\begin{aligned}
A= & \frac{1}{2}\left(c_{0}^{*}+\epsilon c_{0}^{2}\right) \\
B= & -\left|c_{1}^{*}\right| \cos \left(\beta_{1}^{*}-\alpha\right)-\epsilon c_{0}\left|c_{1}\right| \cos \left(\beta_{1}-\alpha\right) \\
C= & \frac{1}{4}\left|c_{2}^{*}\right| \cos \left(\beta_{2}^{*}-2 \alpha\right) \\
& +\frac{1}{4} \epsilon\left|c_{1}\right|^{2} \cos ^{2}\left(\beta_{1}-\alpha\right)+c_{0}^{*}+\frac{1}{2} \epsilon c_{0}^{2}
\end{aligned}
$$

It is important to point out that $\left|\gamma_{n}\right|=(1 / 4)\left|c_{2 m-2}^{*}\right|$ does not depend on α, nor on δ. Since we have

$$
\begin{equation*}
c_{0}^{*}=c_{0}^{2}+\frac{1}{2} \sum_{k=1}^{m-1}\left|c_{k}\right|^{2} \tag{24}
\end{equation*}
$$

it is clear that for $\epsilon \geqq-1$ we have

$$
\begin{equation*}
A=\frac{1}{2}(1+\epsilon) c_{0}^{2}+\frac{1}{4} \sum_{k=1}^{m-1}\left|c_{k}\right|^{2}>0 \tag{25}
\end{equation*}
$$

Therefore $L\left(G_{n}\right)$ is maximal for $\delta=0$ if $B \geqq 0$, and for $\delta=\pi$ if $B \leqq 0$; in both cases θ_{1} and θ_{2} coincide, which proves our lemma.
6. Polynomials having the Extremal Property. We see that the polynomial $G_{n}{ }^{*}(\theta)$ is

$$
\begin{align*}
G_{n}^{*}(\theta) & =2^{n-1}[1+\cos (\theta+\alpha)]^{n} \\
& =\frac{1}{2} C_{2 n, n}+\sum_{k=1}^{n} C_{2 n, n-k} \cos k(\theta+\alpha), \tag{26}
\end{align*}
$$

and we have for it

$$
\begin{equation*}
L\left(G_{n}^{*}\right)=\frac{1}{2}\left(C_{2 n, n}+\epsilon\left(C_{n, n / 2}\right)^{2}\right) \tag{27}
\end{equation*}
$$

Thus we have proved the following theorem.
Theorem 2. If $G_{n}(\theta)$ is a non-negative trigonometric polynomial of order $n=2 m$,

$$
G_{n}(\theta)=R \sum_{k=0}^{n} \bar{\gamma}_{k} e^{i k \theta}, \quad\left|\gamma_{n}\right|=1
$$

with real roots, then

$$
\begin{align*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} G_{n}(\theta) d \theta & +\epsilon\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[G_{n}(\theta)\right]^{1 / 2} d \theta\right\}^{2} \tag{28}\\
& \leqq \frac{1}{2}\left(C_{2 n, n}+\epsilon\left(C_{n, n / 2}\right)^{2}\right), \quad(\epsilon \geqq-1)
\end{align*}
$$

the maximum is attained for the polynomial

$$
\begin{equation*}
G_{n}^{*}(\theta)=2^{n-1}\{1+\cos (\theta+\alpha)\}^{n} \tag{29}
\end{equation*}
$$

α being an arbitrary real argument.
This result may also be stated as the following theorem.
Theorem 2^{\prime}. If $g_{m}(\theta)$ is a trigonometric polynomial of order m, $g_{m}(\theta)=A_{0}+A_{1} \cos \theta+B_{1} \sin \theta+\cdots+A_{m} \cos m \theta+B_{m} \sin m \theta$, with real roots, then
(30) $\frac{A_{m}{ }^{2}+B_{m}{ }^{2}}{\lambda A_{0}{ }^{2}+\sum_{k=1}^{m}\left(A_{k}{ }^{2}+B_{k}{ }^{2}\right)} \geqq \frac{2}{C_{4 m, 2 m}+\frac{\lambda-2}{2}\left(C_{2 m, m}\right)^{2}}, \quad(\lambda \geqq 0)$;
this minimum is attained for the polynomial

$$
\begin{equation*}
g_{m}^{*}(\theta)=C\{1+\cos (\theta+\alpha)\}^{m} . \tag{31}
\end{equation*}
$$

Bibliography

1. L. Fejér, Über trigonometrische Polynome, Journal für Mathematik, vol. 146 (1915), pp. 53-82.
2. O. Szász, Über nichtnegative trigonometrische Polynome, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, (1917), pp. 307-320.
3. O. Szász, Elementare Extremalprobleme über nichtnegative trigonometrische Polynome, ibid., (1927), pp. 185-196.
4. O. Szász, Über harmonische Funktionen und L-Formen, Mathematische Zeitschrift, vol. 1 (1918), pp. 149-162.
5. E. v. Egerváry und O. Szász, Einige Extremalprobleme im Bereiche der trigonometrischen Polynome, ibid., vol. 27 (1927), pp. 641-652.
6. O. Blumenthal, Einige Minimums-Sätze uiber trigonometrische und rationale Polynome, Mathematische Annalen, vol. 77 (1916), pp. 390-403.

Mathematical Institute,
Kharkow, U.S.S.R.

[^0]: \dagger Numbers in brackets refer to the Bibliography at the end.
 $\ddagger \mathcal{R}^{2}$ means real part of $z ;[a]$ means the greatest integer $\leqq a$.

[^1]: \dagger It is clear that all real roots of a non-negative trigonometric polynomial are of even multiplicity.
 $\ddagger \theta_{1}$ and $\theta_{1}+2 \pi$ are not considered as different.
 § See [6], p. 392.

